动手学深度学习(七) 梯度下降

作者: 致Great | 来源:发表于2020-02-18 19:07 被阅读0次

梯度下降

Boyd & Vandenberghe, 2004

%matplotlib inline
import numpy as np
import torch
import time
from torch import nn, optim
import math
import sys
sys.path.append('/home/kesci/input')
import d2lzh1981 as d2l

一维梯度下降

证明:沿梯度反方向移动自变量可以减小函数值

泰勒展开:

f(x+\epsilon)=f(x)+\epsilon f^{\prime}(x)+\mathcal{O}\left(\epsilon^{2}\right)

代入沿梯度方向的移动量 \eta f^{\prime}(x)

f\left(x-\eta f^{\prime}(x)\right)=f(x)-\eta f^{\prime 2}(x)+\mathcal{O}\left(\eta^{2} f^{\prime 2}(x)\right)

f\left(x-\eta f^{\prime}(x)\right) \lesssim f(x)

x \leftarrow x-\eta f^{\prime}(x)

e.g.

f(x) = x^2

def f(x):
    return x**2  # Objective function

def gradf(x):
    return 2 * x  # Its derivative

def gd(eta):
    x = 10
    results = [x]
    for i in range(10):
        x -= eta * gradf(x)
        results.append(x)
    print('epoch 10, x:', x)
    return results

res = gd(0.2)
epoch 10, x: 0.06046617599999997
def show_trace(res):
    n = max(abs(min(res)), abs(max(res)))
    f_line = np.arange(-n, n, 0.01)
    d2l.set_figsize((3.5, 2.5))
    d2l.plt.plot(f_line, [f(x) for x in f_line],'-')
    d2l.plt.plot(res, [f(x) for x in res],'-o')
    d2l.plt.xlabel('x')
    d2l.plt.ylabel('f(x)')
    

show_trace(res)

学习率

show_trace(gd(0.05))
epoch 10, x: 3.4867844009999995
show_trace(gd(1.1))
epoch 10, x: 61.917364224000096

局部极小值

e.g.

f(x) = x\cos cx

c = 0.15 * np.pi

def f(x):
    return x * np.cos(c * x)

def gradf(x):
    return np.cos(c * x) - c * x * np.sin(c * x)

show_trace(gd(2))
epoch 10, x: -1.528165927635083

多维梯度下降

\nabla f(\mathbf{x})=\left[\frac{\partial f(\mathbf{x})}{\partial x_{1}}, \frac{\partial f(\mathbf{x})}{\partial x_{2}}, \dots, \frac{\partial f(\mathbf{x})}{\partial x_{d}}\right]^{\top}

f(\mathbf{x}+\epsilon)=f(\mathbf{x})+\epsilon^{\top} \nabla f(\mathbf{x})+\mathcal{O}\left(\|\epsilon\|^{2}\right)

\mathbf{x} \leftarrow \mathbf{x}-\eta \nabla f(\mathbf{x})

def train_2d(trainer, steps=20):
    x1, x2 = -5, -2
    results = [(x1, x2)]
    for i in range(steps):
        x1, x2 = trainer(x1, x2)
        results.append((x1, x2))
    print('epoch %d, x1 %f, x2 %f' % (i + 1, x1, x2))
    return results

def show_trace_2d(f, results): 
    d2l.plt.plot(*zip(*results), '-o', color='#ff7f0e')
    x1, x2 = np.meshgrid(np.arange(-5.5, 1.0, 0.1), np.arange(-3.0, 1.0, 0.1))
    d2l.plt.contour(x1, x2, f(x1, x2), colors='#1f77b4')
    d2l.plt.xlabel('x1')
    d2l.plt.ylabel('x2')

f(x) = x_1^2 + 2x_2^2

eta = 0.1

def f_2d(x1, x2):  # 目标函数
    return x1 ** 2 + 2 * x2 ** 2

def gd_2d(x1, x2):
    return (x1 - eta * 2 * x1, x2 - eta * 4 * x2)

show_trace_2d(f_2d, train_2d(gd_2d))
epoch 20, x1 -0.057646, x2 -0.000073

自适应方法

牛顿法

x + \epsilon 处泰勒展开:

f(\mathbf{x}+\epsilon)=f(\mathbf{x})+\epsilon^{\top} \nabla f(\mathbf{x})+\frac{1}{2} \epsilon^{\top} \nabla \nabla^{\top} f(\mathbf{x}) \epsilon+\mathcal{O}\left(\|\epsilon\|^{3}\right)

最小值点处满足: \nabla f(\mathbf{x})=0, 即我们希望 \nabla f(\mathbf{x} + \epsilon)=0, 对上式关于 \epsilon 求导,忽略高阶无穷小,有:

\nabla f(\mathbf{x})+\boldsymbol{H}_{f} \boldsymbol{\epsilon}=0 \text { and hence } \epsilon=-\boldsymbol{H}_{f}^{-1} \nabla f(\mathbf{x})

c = 0.5

def f(x):
    return np.cosh(c * x)  # Objective

def gradf(x):
    return c * np.sinh(c * x)  # Derivative

def hessf(x):
    return c**2 * np.cosh(c * x)  # Hessian

# Hide learning rate for now
def newton(eta=1):
    x = 10
    results = [x]
    for i in range(10):
        x -= eta * gradf(x) / hessf(x)
        results.append(x)
    print('epoch 10, x:', x)
    return results

show_trace(newton())
epoch 10, x: 0.0
c = 0.15 * np.pi

def f(x):
    return x * np.cos(c * x)

def gradf(x):
    return np.cos(c * x) - c * x * np.sin(c * x)

def hessf(x):
    return - 2 * c * np.sin(c * x) - x * c**2 * np.cos(c * x)

show_trace(newton())
epoch 10, x: 26.83413291324767
show_trace(newton(0.5))
epoch 10, x: 7.269860168684531

收敛性分析

只考虑在函数为凸函数, 且最小值点上 f''(x^*) > 0 时的收敛速度:

x_k 为第 k 次迭代后 x 的值, e_{k}:=x_{k}-x^{*} 表示 x_k 到最小值点 x^{*} 的距离,由 f'(x^{*}) = 0:

0=f^{\prime}\left(x_{k}-e_{k}\right)=f^{\prime}\left(x_{k}\right)-e_{k} f^{\prime \prime}\left(x_{k}\right)+\frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) \text{for some } \xi_{k} \in\left[x_{k}-e_{k}, x_{k}\right]

两边除以 f''(x_k), 有:

e_{k}-f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)=\frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right)

代入更新方程 x_{k+1} = x_{k} - f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right), 得到:

x_k - x^{*} - f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right) =\frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right)

x_{k+1} - x^{*} = e_{k+1} = \frac{1}{2} e_{k}^{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right)

\frac{1}{2} f^{\prime \prime \prime}\left(\xi_{k}\right) / f^{\prime \prime}\left(x_{k}\right) \leq c 时,有:

e_{k+1} \leq c e_{k}^{2}

预处理 (Heissan阵辅助梯度下降)

\mathbf{x} \leftarrow \mathbf{x}-\eta \operatorname{diag}\left(H_{f}\right)^{-1} \nabla \mathbf{x}

梯度下降与线性搜索(共轭梯度法)

随机梯度下降

随机梯度下降参数更新

对于有 n 个样本对训练数据集,设 f_i(x) 是第 i 个样本的损失函数, 则目标函数为:

f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} f_{i}(\mathbf{x})

其梯度为:

\nabla f(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\mathbf{x})

使用该梯度的一次更新的时间复杂度为 \mathcal{O}(n)

随机梯度下降更新公式 \mathcal{O}(1):

\mathbf{x} \leftarrow \mathbf{x}-\eta \nabla f_{i}(\mathbf{x})

且有:

\mathbb{E}_{i} \nabla f_{i}(\mathbf{x})=\frac{1}{n} \sum_{i=1}^{n} \nabla f_{i}(\mathbf{x})=\nabla f(\mathbf{x})

e.g.

f(x_1, x_2) = x_1^2 + 2 x_2^2

def f(x1, x2):
    return x1 ** 2 + 2 * x2 ** 2  # Objective

def gradf(x1, x2):
    return (2 * x1, 4 * x2)  # Gradient

def sgd(x1, x2):  # Simulate noisy gradient
    global lr  # Learning rate scheduler
    (g1, g2) = gradf(x1, x2)  # Compute gradient
    (g1, g2) = (g1 + np.random.normal(0.1), g2 + np.random.normal(0.1))
    eta_t = eta * lr()  # Learning rate at time t
    return (x1 - eta_t * g1, x2 - eta_t * g2)  # Update variables

eta = 0.1
lr = (lambda: 1)  # Constant learning rate
show_trace_2d(f, train_2d(sgd, steps=50))

epoch 50, x1 -0.027566, x2 0.137605

动态学习率

\begin{array}{ll}{\eta(t)=\eta_{i} \text { if } t_{i} \leq t \leq t_{i+1}} & {\text { piecewise constant }} \\ {\eta(t)=\eta_{0} \cdot e^{-\lambda t}} & {\text { exponential }} \\ {\eta(t)=\eta_{0} \cdot(\beta t+1)^{-\alpha}} & {\text { polynomial }}\end{array}

def exponential():
    global ctr
    ctr += 1
    return math.exp(-0.1 * ctr)

ctr = 1
lr = exponential  # Set up learning rate
show_trace_2d(f, train_2d(sgd, steps=1000))
epoch 1000, x1 -0.677947, x2 -0.089379
def polynomial():
    global ctr
    ctr += 1
    return (1 + 0.1 * ctr)**(-0.5)

ctr = 1
lr = polynomial  # Set up learning rate
show_trace_2d(f, train_2d(sgd, steps=50))
epoch 50, x1 -0.095244, x2 -0.041674

小批量随机梯度下降

读取数据

读取数据

def get_data_ch7():  # 本函数已保存在d2lzh_pytorch包中方便以后使用
    data = np.genfromtxt('/home/kesci/input/airfoil4755/airfoil_self_noise.dat', delimiter='\t')
    data = (data - data.mean(axis=0)) / data.std(axis=0) # 标准化
    return torch.tensor(data[:1500, :-1], dtype=torch.float32), \
           torch.tensor(data[:1500, -1], dtype=torch.float32) # 前1500个样本(每个样本5个特征)

features, labels = get_data_ch7()
features.shape
torch.Size([1500, 5])
import pandas as pd
df = pd.read_csv('/home/kesci/input/airfoil4755/airfoil_self_noise.dat', delimiter='\t', header=None)
df.head(10)

从零开始实现

def sgd(params, states, hyperparams):
    for p in params:
        p.data -= hyperparams['lr'] * p.grad.data
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch7(optimizer_fn, states, hyperparams, features, labels,
              batch_size=10, num_epochs=2):
    # 初始化模型
    net, loss = d2l.linreg, d2l.squared_loss
    
    w = torch.nn.Parameter(torch.tensor(np.random.normal(0, 0.01, size=(features.shape[1], 1)), dtype=torch.float32),
                           requires_grad=True)
    b = torch.nn.Parameter(torch.zeros(1, dtype=torch.float32), requires_grad=True)

    def eval_loss():
        return loss(net(features, w, b), labels).mean().item()

    ls = [eval_loss()]
    data_iter = torch.utils.data.DataLoader(
        torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)
    
    for _ in range(num_epochs):
        start = time.time()
        for batch_i, (X, y) in enumerate(data_iter):
            l = loss(net(X, w, b), y).mean()  # 使用平均损失
            
            # 梯度清零
            if w.grad is not None:
                w.grad.data.zero_()
                b.grad.data.zero_()
                
            l.backward()
            optimizer_fn([w, b], states, hyperparams)  # 迭代模型参数
            if (batch_i + 1) * batch_size % 100 == 0:
                ls.append(eval_loss())  # 每100个样本记录下当前训练误差
    # 打印结果和作图
    print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
    d2l.set_figsize()
    d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
    d2l.plt.xlabel('epoch')
    d2l.plt.ylabel('loss')
def train_sgd(lr, batch_size, num_epochs=2):
    train_ch7(sgd, None, {'lr': lr}, features, labels, batch_size, num_epochs)

对比

train_sgd(1, 1500, 6)
loss: 0.244373, 0.009881 sec per epoch
train_sgd(0.005, 1)
loss: 0.245968, 0.463836 sec per epoch
train_sgd(0.05, 10)
loss: 0.243900, 0.065017 sec per epoch

简洁实现

# 本函数与原书不同的是这里第一个参数优化器函数而不是优化器的名字
# 例如: optimizer_fn=torch.optim.SGD, optimizer_hyperparams={"lr": 0.05}
def train_pytorch_ch7(optimizer_fn, optimizer_hyperparams, features, labels,
                    batch_size=10, num_epochs=2):
    # 初始化模型
    net = nn.Sequential(
        nn.Linear(features.shape[-1], 1)
    )
    loss = nn.MSELoss()
    optimizer = optimizer_fn(net.parameters(), **optimizer_hyperparams)

    def eval_loss():
        return loss(net(features).view(-1), labels).item() / 2

    ls = [eval_loss()]
    data_iter = torch.utils.data.DataLoader(
        torch.utils.data.TensorDataset(features, labels), batch_size, shuffle=True)

    for _ in range(num_epochs):
        start = time.time()
        for batch_i, (X, y) in enumerate(data_iter):
            # 除以2是为了和train_ch7保持一致, 因为squared_loss中除了2
            l = loss(net(X).view(-1), y) / 2 
            
            optimizer.zero_grad()
            l.backward()
            optimizer.step()
            if (batch_i + 1) * batch_size % 100 == 0:
                ls.append(eval_loss())
    # 打印结果和作图
    print('loss: %f, %f sec per epoch' % (ls[-1], time.time() - start))
    d2l.set_figsize()
    d2l.plt.plot(np.linspace(0, num_epochs, len(ls)), ls)
    d2l.plt.xlabel('epoch')
    d2l.plt.ylabel('loss')
train_pytorch_ch7(optim.SGD, {"lr": 0.05}, features, labels, 10)
loss: 0.243770, 0.047664 sec per epoch

相关文章

  • 动手学深度学习(七) 梯度下降

    梯度下降 (Boyd & Vandenberghe, 2004) 一维梯度下降 证明:沿梯度反方向移动自变量可以减...

  • 动手学梯度下降

    梯度下降是机器学习中使用最广泛的优化方法(没有之一), 今天我们用一个线性回归作为例子, 一边撸代码, 一边认识一...

  • 深度模型训练方法

    深度模型拥有很多超参: 学习步长:alpha momentum 梯度下降参数:beta Adam 梯度下降参数:b...

  • Pytorch_第七篇_深度学习 (DeepLearning)

    深度学习 (DeepLearning) 基础 [3]---梯度下降法 Introduce 在上一篇“深度学习 (D...

  • 局部搜索之梯度下降法

    在各种最优化算法中,梯度下降法是最常见的一种,在深度学习的训练中被广为使用。 梯度下降法的场景假设梯度下降法的基本...

  • 神经网络超参数选择

    1. 学习率 1.1 是什么 深度学习模型通常由随机梯度下降算法进行训练。随机梯度下降算法有许多变形:例如 Ada...

  • 2022-02-15

    《动手学深度学习》环境搭建教程指南—windows10系统 本文在李沐博士的《动手学深度学习》 — 动手学深度学习...

  • 动手学深度学习(五) 梯度消失、梯度爆炸

    梯度消失、梯度爆炸以及Kaggle房价预测 梯度消失和梯度爆炸 考虑到环境因素的其他问题 Kaggle房价预测 梯...

  • 快速理解梯度下降法

    1. 梯度下降法的抽象理解 梯度下降法(Gradient descent)是深度学习中的最基础的工具之一,它是一种...

  • Gradient Descent (梯度下降)

    重要性 梯度下降算法在机器学习和深度学习中扮演者重要的角色。在构建模型时, 往往需要对数据进行学习,而梯度下降就是...

网友评论

    本文标题:动手学深度学习(七) 梯度下降

    本文链接:https://www.haomeiwen.com/subject/bklnfhtx.html