算法

作者: Android_冯星 | 来源:发表于2020-04-16 22:38 被阅读0次

本文转载自码农网:http://www.codeceo.com/article/10-sort-algorithm-interview.html#0-tsina-1-10490-397232819ff9a47a7b7e80a40613cfe1

菜鸟教程

排序算法.png

查找和排序算法是算法的入门知识,其经典思想可以用于很多算法当中。因为其实现代码较短,应用较常见。所以在面试中经常会问到排序算法及其相关的问题。但万变不离其宗,只要熟悉了思想,灵活运用也不是难事。一般在面试中最常考的是快速排序和归并排序,并且经常有面试官要求现场写出这两种排序的代码。对这两种排序的代码一定要信手拈来才行。还有插入排序、冒泡排序、堆排序、基数排序、桶排序等。面试官对于这些排序可能会要求比较各自的优劣、各种算法的思想及其使用场景。还有要会分析算法的时间和空间复杂度。通常查找和排序算法的考察是面试的开始,如果这些问题回答不好,估计面试官都没有继续面试下去的兴趣都没了。所以想开个好头就要把常见的排序算法思想及其特点要熟练掌握,有必要时要熟练写出代码。

冒泡排序

冒泡排序是最简单的排序之一了,其大体思想就是通过与相邻元素的比较和交换来把小的数交换到最前面。这个过程类似于水泡向上升一样,因此而得名。举个栗子,对5,3,8,6,4这个无序序列进行冒泡排序。首先从后向前冒泡,4和6比较,把4交换到前面,序列变成5,3,8,4,6。同理4和8交换,变成5,3,4,8,6,3和4无需交换。5和3交换,变成3,5,4,8,6,3.这样一次冒泡就完了,把最小的数3排到最前面了。对剩下的序列依次冒泡就会得到一个有序序列。冒泡排序的时间复杂度为O(n^2)。

算法步骤
  • 比较相邻的元素。如果第一个比第二个大,就交换他们两个。

  • 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

  • 针对所有的元素重复以上的步骤,除了最后一个。

  • 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

冒泡排序.gif
public class BubbleSort {

    public static void bubbleSort(int[] arr) {
        if(arr == null || arr.length == 0)
            return ;
        for(int i=0; i<arr.length-1; i++) {
            for(int j=arr.length-1; j>i; j--) {
                if(arr[j] < arr[j-1]) {
                    swap(arr, j-1, j);
                }
            }
        }
    }

    public static void swap(int[] arr, int i, int j) {
        int temp = arr[i];
        arr[i] = arr[j];
        arr[j] = temp;
    }
}

function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i < len - 1; i++) {
        for (var j = 0; j < len - 1 - i; j++) {
            if (arr[j] > arr[j+1]) {        // 相邻元素两两对比
                var temp = arr[j+1];        // 元素交换
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}

选择排序

选择排序的思想其实和冒泡排序有点类似,都是在一次排序后把最小的元素放到最前面。但是过程不同,冒泡排序是通过相邻的比较和交换。而选择排序是通过对整体的选择。举个栗子,对5,3,8,6,4这个无序序列进行简单选择排序,首先要选择5以外的最小数来和5交换,也就是选择3和5交换,一次排序后就变成了3,5,8,6,4.对剩下的序列一次进行选择和交换,最终就会得到一个有序序列。其实选择排序可以看成冒泡排序的优化,因为其目的相同,只是选择排序只有在确定了最小数的前提下才进行交换,大大减少了交换的次数。选择排序的时间复杂度为O(n^2)

算法步骤
  • 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。

  • 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

  • 重复第二步,直到所有元素均排序完毕。

public class SelectionSort implements IArraySort {

    @Override
    public int[] sort(int[] sourceArray) throws Exception {
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        // 总共要经过 N-1 轮比较
        for (int i = 0; i < arr.length - 1; i++) {
            int min = i;

            // 每轮需要比较的次数 N-i
            for (int j = i + 1; j < arr.length; j++) {
                if (arr[j] < arr[min]) {
                    // 记录目前能找到的最小值元素的下标
                    min = j;
                }
            }

            // 将找到的最小值和i位置所在的值进行交换
            if (i != min) {
                int tmp = arr[i];
                arr[i] = arr[min];
                arr[min] = tmp;
            }

        }
        return arr;
    }
}
选择排序.gif

插入排序

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。插入排序是一种最简单直观的排序算法,它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

算法步骤
  • 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。

  • 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)

image.png
  public int[] sort(int[] sourceArray) throws Exception {
        // 对 arr 进行拷贝,不改变参数内容
        int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);

        // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的
        for (int i = 1; i < arr.length; i++) {

            // 记录要插入的数据
            int tmp = arr[i];

            // 从已经排序的序列最右边的开始比较,找到比其小的数
            int j = i;
            while (j > 0 && tmp < arr[j - 1]) {
                arr[j] = arr[j - 1];
                j--;
            }

            // 存在比其小的数,插入
            if (j != i) {
                arr[j] = tmp;
            }

        }
        return arr;
    }

快速排序

快速排序是由东尼·霍尔所发展的一种排序算法。在平均状况下,排序 n 个项目要 Ο(nlogn) 次比较。在最坏状况下则需要 Ο(n2) 次比较,但这种状况并不常见。事实上,快速排序通常明显比其他 Ο(nlogn) 算法更快,因为它的内部循环(inner loop)可以在大部分的架构上很有效率地被实现出来。

快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists)。

快速排序又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。

快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高!它是处理大数据最快的排序算法之一了。虽然 Worst Case 的时间复杂度达到了 O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为 O(n logn) 的排序算法表现要更好,可是这是为什么呢,我也不知道。好在我的强迫症又犯了,查了 N 多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是 O(n²),比如说顺序数列的快排。但它的平摊期望时间是 O(nlogn),且 O(nlogn) 记号中隐含的常数因子很小,比复杂度稳定等于 O(nlogn) 的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

算法步骤

  • 从数列中挑出一个元素,称为 "基准"(pivot);

  • 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;

  • 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;

快速排序一听名字就觉得很高端,在实际应用当中快速排序确实也是表现最好的排序算法。冒泡排序虽然高端,但其实其思想是来自冒泡排序,冒泡排序是通过相邻元素的比较和交换把最小的冒泡到最顶端,而快速排序是比较和交换小数和大数,这样一来不仅把小数冒泡到上面同时也把大数沉到下面。

举个栗子:对5,3,8,6,4这个无序序列进行快速排序,思路是右指针找比基准数小的,左指针找比基准数大的,交换之。

5,3,8,6,4 用5作为比较的基准,最终会把5小的移动到5的左边,比5大的移动到5的右边。

5,3,8,6,4 首先设置i,j两个指针分别指向两端,j指针先扫描(思考一下为什么?)4比5小停止。然后i扫描,8比5大停止。交换i,j位置。

5,3,4,6,8 然后j指针再扫描,这时j扫描4时两指针相遇。停止。然后交换4和基准数。

4,3,5,6,8 一次划分后达到了左边比5小,右边比5大的目的。之后对左右子序列递归排序,最终得到有序序列。

上面留下来了一个问题为什么一定要j指针先动呢?首先这也不是绝对的,这取决于基准数的位置,因为在最后两个指针相遇的时候,要交换基准数到相遇的位置。一般选取第一个数作为基准数,那么就是在左边,所以最后相遇的数要和基准数交换,那么相遇的数一定要比基准数小。所以j指针先移动才能先找到比基准数小的数。

快速排序是不稳定的,其时间平均时间复杂度是O(nlgn)。

/**
 *@Description:<p>实现快速排序算法</p>
 *@author 王旭
 *@time 2016-3-3 下午5:07:29
 */
public class QuickSort {
    //一次划分
    public static int partition(int[] arr, int left, int right) {
        int pivotKey = arr[left];
        int pivotPointer = left;

        while(left < right) {
            while(left < right && arr[right] >= pivotKey)
                right --;
            while(left < right && arr[left] <= pivotKey)
                left ++;
            swap(arr, left, right); //把大的交换到右边,把小的交换到左边。
        }
        swap(arr, pivotPointer, left); //最后把pivot交换到中间
        return left;
    }

    public static void quickSort(int[] arr, int left, int right) {
        if(left >= right)
            return ;
        int pivotPos = partition(arr, left, right);
        quickSort(arr, left, pivotPos-1);
        quickSort(arr, pivotPos+1, right);
    }

    public static void sort(int[] arr) {
        if(arr == null || arr.length == 0)
            return ;
        quickSort(arr, 0, arr.length-1);
    }

    public static void swap(int[] arr, int left, int right) {
        int temp = arr[left];
        arr[left] = arr[right];
        arr[right] = temp;
    }

}

其实上面的代码还可以再优化,上面代码中基准数已经在pivotKey中保存了,所以不需要每次交换都设置一个temp变量,在交换左右指针的时候只需要先后覆盖就可以了。这样既能减少空间的使用还能降低赋值运算的次数。优化代码如下:

public class QuickSort {

    /**
     * 划分
     * @param arr
     * @param left
     * @param right
     * @return
     */
    public static int partition(int[] arr, int left, int right) {
        int pivotKey = arr[left];

        while(left < right) {
            while(left < right && arr[right] >= pivotKey)
                right --;
            arr[left] = arr[right]; //把小的移动到左边
            while(left < right && arr[left] <= pivotKey)
                left ++;
            arr[right] = arr[left]; //把大的移动到右边
        }
        arr[left] = pivotKey; //最后把pivot赋值到中间
        return left;
    }

    /**
     * 递归划分子序列
     * @param arr
     * @param left
     * @param right
     */
    public static void quickSort(int[] arr, int left, int right) {
        if(left >= right)
            return ;
        int pivotPos = partition(arr, left, right);
        quickSort(arr, left, pivotPos-1);
        quickSort(arr, pivotPos+1, right);
    }

    public static void sort(int[] arr) {
        if(arr == null || arr.length == 0)
            return ;
        quickSort(arr, 0, arr.length-1);
    }

}

总结快速排序的思想:冒泡+二分+递归分治,慢慢体会。。。

快速排序.gif

相关文章

  • 匈牙利算法

    算法思想 算法流程 算法步骤 算法实现 python 算法应用

  • web开发需要知道的几个算法

    算法分类 快速排序算法 深度优先算法 广度优先算法 堆排序算法 归并排序算法

  • 机器学习算法

    机器学习的算法分监督算法和无监督 算法。监督算法包括回归算法,神经网络,SVM;无监督算法包括聚类算法,降维算法。...

  • 字符串匹配

    BF 算法和 RK 算法BM 算法和 KMP 算法

  • 垃圾回收算法有几种类型? 他们对应的优缺点又是什么?

    常见的垃圾回收算法有: 标记-清除算法、复制算法、标记-整理算法、分代收集算法 标记-清除算法 标记—清除算法包括...

  • 头条-手撕代码

    [toc] 图算法 以及最短路径算法 树算法 手写LRU 排序算法 链表算法

  • 关于一些算法

    我们平常说的算法按照使用方向加密算法,排序算法,搜索算法,优化算法,音视频处理算法,图片处理算法 1.加密解密算法...

  • 给我巨大影响的技术书籍

    算法《算法概论》《算法设计与分析基础》 Anany Levitin《算法引论》Udi Manber《算法导论》《什...

  • 缓存相关

    cache淘汰算法:LIRS 算法 缓存那些事 Redis缓存淘汰算法,LRU算法,LRU算法讲解

  • LZW压缩算法

    参考链接:超级简单的数据压缩算法—LZW算法压缩算法——lzw算法实现LZW算法 LZW 压缩算法正确图解

网友评论

      本文标题:算法

      本文链接:https://www.haomeiwen.com/subject/bpdjvhtx.html