美文网首页数据结构与算法
【数据结构】并查集

【数据结构】并查集

作者: littlefogcat | 来源:发表于2021-01-16 06:28 被阅读0次

1. 并查集

并查集解决的是不相交集合的合并及查询问题。并查集的本质是一种树形数据结构,每个集合对应一棵树。当需要执行“合并两个元素所在集合”类似操作时,则可能会用到并查集。

并查集中,每个节点指向其父节点,而根节点的父节点为其自身,而根节点本身就可以代表整个集合。即,对于一个节点,如果通过递归调用父节点,最终可以追溯到某个根节点,那么该节点就属于这个根节点所代表的集合

在执行合并两个元素所在集合(即合并两个节点所在的树)操作时,并查集会首先检查两个节点所在树的根节点是否是同一个;如果是的话,则说明不需要合并;反之,则使其中一个根节点成为另一个根节点的子节点

通俗地讲,并查集就相当于若干“原始部落”,每个节点都是部落的成员,而根节点就是部落的“首领”。子节点的查询就相当于成员找到上级,上级又找到上级的上级,最后追溯到部落的首领。而集合的合并就相当于部落的兼并,两个部落合并成一个,首领只剩一个,另一个则俯首称臣(成为另一个根的子节点)。

1.1 并查集的特点

并查集有以下特点:

  1. 包含一个或若干树状结构,每棵树代表一个集合,每个节点代表集合中的一个元素;
  2. 树中节点只知道自己的父节点;
  3. 根节点的父节点为其自身;
  4. 可以执行合并操作,将两个节点所在的树合并成一棵树;合并之后,一棵树的根节点成为另一棵树根节点的子节点。

1.2 并查集的一般形式

/**
 * 并查集
 *
 * @param <T> 节点类型
 */
public class UnionFind<T> {
    protected int size;
    protected final Map<T, T> parent = new HashMap<>();

    /**
     * @param orig 原始数据集
     */
    public UnionFind(T[] orig) {
        for (T t : orig) {
            parent.put(t, t); // 每个节点作为一个根节点
        }
        size = orig.length;
    }

    /**
     * 合并两个节点所在的树
     */
    public void union(T node1, T node2) {
        T root1 = find(node1);
        T root2 = find(node2);
        if (root1 != root2) {
            parent.put(root2, root1); // 使树2成为树1子树
            size--;
        }
    }

    /**
     * 查询节点node所在树的根节点
     */
    public T find(T node) {
        if (!parent.containsKey(node)) return null;
        while (parent.get(node) != node) node = parent.get(node);
        return node;
    }

    public int size() {
        return size;
    }
}

2. 例题

2.1 例1 城市道路系统问题

输入一个整型数组int[] cities,每个元素代表一个城市;
输入若干对整数int[][] roads,每对整数表示对应的两个城市之间修建有道路
如果城市之间能通过道路到达,那么称这些城市处于同一个道路系统
问:总共有多少个道路系统

假设城市数组为{1,2,3,4,5,6,7,8,9}
道路为{1,2}, {3,4}, {4,5}, {6,8}, {1,6}, {9,5}

并查集的思路:
首先把每个原始数据各自分割成一个集合:{1}{2}{3}{4}{5}{6}{7}{8}{9}
连通道路{1,2}(即合并1、2所在集合):{1,2}{3}{4}{5}{6}{7}{8}{9}
连通道路{3,4}(即合并3、4所在集合):{1,2}{3,4}{5}{6}{7}{8}{9}
连通道路{4,5}(即合并4、5所在集合):{1,2}{3,4,5}{6}{7}{8}{9}
连通道路{6,8}(即合并6、8所在集合):{1,2}{3,4,5}{6,8}{7}{9}
连通道路{1,6}(即合并1、6所在集合):{1,2,6,8}{3,4,5}{7}{9}
连通道路{9,5}(即合并9、5所在集合):{1,2,6,8}{3,4,5,9}{7}

因为最后合并成了3个集合,故一共有3个道路系统。

例题代码实现:

    public int countRoadSystem(int[] cities, int[][] roads) {
        UnionFind<Integer> uf = new UnionFind<Integer>(cities);
        for (int[] road : roads) uf.union(road[0], road[1]);
        return uf.size();
    }

其中并查集的代码为第一节中的一般形式。

2.2 例2 Leetcode 947. 移除最多的同行或同列石头

题目Leetcode 947. 移除最多的同行或同列石头
题解Leetcode 947. 移除最多的同行或同列石头

题目:

n 块石头放置在二维平面中的一些整数坐标点上。每个坐标点上最多只能有一块石头。
如果一块石头的 同行或者同列 上有其他石头存在,那么就可以移除这块石头。
给你一个长度为 n 的数组 stones ,其中 stones[i] = [xi, yi] 表示第 i 块石头的位置,返回 可以移除的石子 的最大数量。

示例 1:

输入:stones = [[0,0],[0,1],[1,0],[1,2],[2,1],[2,2]]
输出:5
解释:一种移除 5 块石头的方法如下所示:

  1. 移除石头 [2,2] ,因为它和 [2,1] 同行。
  2. 移除石头 [2,1] ,因为它和 [0,1] 同列。
  3. 移除石头 [1,2] ,因为它和 [1,0] 同行。
  4. 移除石头 [1,0] ,因为它和 [0,0] 同列。
  5. 移除石头 [0,1] ,因为它和 [0,0] 同行。
    石头 [0,0] 不能移除,因为它没有与另一块石头同行/列。

示例 2:

输入:stones = [[0,0],[0,2],[1,1],[2,0],[2,2]]
输出:3
解释:一种移除 3 块石头的方法如下所示:

  1. 移除石头 [2,2] ,因为它和 [2,0] 同行。
  2. 移除石头 [2,0] ,因为它和 [0,0] 同列。
  3. 移除石头 [0,2] ,因为它和 [0,0] 同行。
    石头 [0,0] 和 [1,1] 不能移除,因为它们没有与另一块石头同行/列。

示例 3:

输入:stones = [[0,0]]
输出:0
解释:[0,0] 是平面上唯一一块石头,所以不可以移除它。

提示:

  • 1 <= stones.length <= 1000
  • 0 <= xi, yi <= 104
  • 不会有两块石头放在同一个坐标点上

题解

容易得到:

  1. 对于两个石子A和B,如果二者同行/列,那么A和B属于同一集合
  2. 对于石子A、B、C,如果A、B属于同一集合,且B、C属于同一集合,那么A、C属于同一集合
  3. 对于一个大小为 n 的石子集合,可以移除 n - 1 枚石子。

遍历数组stones,对于每一个石子{x, y},天然都属于两个集合:第x行、第y列。于是,将第x行与第y列的石子合并成一个新的集合即可。

    public int removeStones(int[][] stones) {
        UnionFind<Integer> uf = new UnionFind<>();
        for (int[] stone : stones) {
            int x = stone[0];
            int y = stone[1];
            uf.union(x, -y - 1); // 合并"第x行"与"第y列",其中用负数代替第y列
        }
        return stones.length - uf.size();
    }

相关文章

  • 并查集

    并查集 并查集是什么 并查集是一种用来管理元素分组情况的数据结构,并查集可以高效地进行如下操作: 查询元素a和元素...

  • 并查集

    并查集是什么 并查集是一种用来管理元素分组情况的数据结构。并查集可以高效地进行如下操作。不过需要注意并查集虽然可以...

  • Union-Find algorithm-并查集算法

    并查集 并查集(Union-Find Set),也称为不相交集数据结构(Disjointed Set Data S...

  • 高级数据结构:并查集(Java 实现)

    并查集的内容非常简单,代码的每个方法的实现都很短,难在灵活应用。 并查集基础 为什么叫并查集?因为在这个数据结构中...

  • 最小生成树算法——Kruskal算法

    算法思想 先了解下什么叫并查集 并查集 (Union Find Set)又叫不相交集数据结构(Disjointed...

  • luogu P1551 亲戚(并查集入门)

    这是一个并查集模板。 说一下并查集,虽然我也是刚刚学会没几天。。。 并查集是个树形结构的数据结构,主要用于合并两个...

  • markdown学习

    #并查集 ##并查集的定义 ##并查集的操作

  • 数据结构——并查集

    目录 1、等价关系和等价类 2、并查集实现中的权衡 2.1、快速FIND实现(Quick FIND) 2.2、快速...

  • 数据结构 - 并查集

    相关概念 等价关系若对于每一对元素(a, b), ![](http://latex.codecogs.com/sv...

  • 数据结构-并查集

    并查集 洛谷(P3367) 在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集...

网友评论

    本文标题:【数据结构】并查集

    本文链接:https://www.haomeiwen.com/subject/bpvgaktx.html