绝大多数时候,一群人合起来都会比一个人更有智慧。问题是每个人天生都知道怎么运用自己的智慧,但群体是个人的集合,汇聚许多人的智慧,需要方法。
今天讲第四种方法:极化
凭借彻底运用话份逻辑聚合群体智慧,希弗和达利欧做到了他们各自那个行业的顶峰。能不能再往前走一步,做得更好?
泰特罗克(Philip Tetlock)认为可以。这就是我们今天要讲的第四种聚合方法:极化。
泰特罗克是美国著名政治学者,领导预测项目“善断计划”(Good Judgement Project)。计划的资助者是直属美国全国情报总监的高级情报研究局,旨在为整个情报界提供革命性的创新能力。
几年间,两万多人在善断计划网站上就美国情报界抛出来的五百个问题作持续预测,实时检验。
泰特罗克把每个预测者的每次预测都打分,汇总成个人总分,有2%的人脱颖而出,攀到最优秀一级,成为“超级预测者”。
善断计划则根据每个人的得分调整其在整体预测中的权重分配,生成预测。
到这一步,泰特罗克的方法与达利欧和希弗相似。下一步则是泰特罗克的创举,其实也很简单:对加权平均后形成的预测结果,再做一道加工:极化(extremize),将预测结果往100%或者0的方向推。
举个例子,一任美国总统能不能连任?如果预测者加权平均后的预测概率是70%,那就把它上调到比如85%;相反,如果预测值是30%,那就把它下调到15%。
极化的理由是这样的:假设群体中的每个人都获得了群体的全部信息,他们作预测时一定会更为自信。
从群体简单平均值到加权平均的过程,事实上已经聚合了所有人的信息,但没有完全反映出与此对应的自信。
极化就是要捕捉这个自信:如果是乐观预测,极化会输出一个更乐观的预测;如果是悲观预测,极化会输出一个更悲观的预测。
善断计划的预测准确率高得惊人。参与者不过是群普通人,智商还可以但不特殊,教育背景参差不齐,也没有内幕信息,借助相当简单的算法,但他们的预测击败了全部现有的预测系统,甚至战胜了专业情报分析师。
了解如何成为超级预测者,推荐读泰特罗克的书《超预测》(Superforcastering: The Art and Science of Prediction )。我把他许为当年最佳图书。
正确地聚合群体智慧,就获得了这个时代最接近于千里眼的工具。
不难触类旁通:只要是测试永不停歇,参与者足够多,检验和反馈足够明确的领域,无论经济、政治、金融还是其他,都可以用“加权平均+动态调整权重+极化算法”来撬动群体智慧,应用空间极大。
我身边就有位人肉聚合群体智慧的模范。她的信息来源主要是一流媒体和人际见闻,观点则形成于交流,特点一是人数多,二是看法杂,三是水平高。
在这个过程中,她会反复摇摆,形成很多前后不尽一致的看法;然后,行动力又强,每有看法必决策,每决策必行动,于是整个过程来回翻烧饼。
老实说,我曾经觉得这样做事自相矛盾,空耗精力,怎么行?!慢慢的,我懂得了,观点摇摆,是因为在聚合中要渐进校正;行动摇摆,是在实施中要迅速获得反馈并相应作调整。能够做到我们这个行业的巅峰,没有幸运。
她无师自通,找到了聚合并使用群体智慧的实践算法。光追求前后一致不空耗能量,美则美矣,但缺少信息,忽视反馈,在闭环里打转,又有什么用。
掌握泰特罗克的方法,我们能比她做得更好。
网友评论