Source: Github - aahr1 / pdslasso
Stata package: pdslasso
pdslasso
and ivlasso
are routines for estimating structural parameters in linear models with many controls and/or instruments. The routines use methods for estimating sparse high-dimensional models, specifically the lasso (Least Absolute Shrinkage and Selection Operator, Tibshirani 1996) and the square-root-lasso (Belloni et al. 2011, 2014).
These estimators are used to select controls (pdslasso
) and/or instruments (ivlasso
) from a large set of variables (possibly numbering more than the number of observations), in a setting where the researcher is interested in estimating the causal impact of one or more (possibly endogenous) causal variables of interest.
Two approaches are implemented in pdslasso
and ivlasso
:
- The post-double-selection methodology of Belloni et al. (2012, 2013, 2014, 2015, 2016).
- The post-regularization methodology of Chernozhukov, Hansen and Spindler (2015).
For instrumental variable estimation, `ivlasso implements weak-identification-robust hypothesis tests and confidence sets using the Chernozhukov et al. (2013) sup-score test.
The implemention of these methods in pdslasso
and ivlasso
require the Stata program rlasso
(available in the separate Stata module lassopack), which provides lasso and square root-lasso estimation with data-driven penalization.
Installation
To install the latest version from SSC, type
ssc install lassopack, replace
ssc install pdslasso, replace
Help files
For further information on pdslasso
and ivlasso
, type
help pdslasso
The help files contain more information about the implemented routines and examples.
Acknowledgements
Thanks to Sergio Correia for advice on the use of the FTOOLS package.
Citation
pdslasso
and ivlasso
are not official Stata commands. They are free contributions to the research community, like a paper.
Please cite it as such:
Ahrens, A., Hansen, C.B., Schaffer, M.E. 2018. pdslasso and ivlasso: Progams for post-selection and post-regularization OLS or IV estimation and inference. http://ideas.repec.org/c/boc/bocode/s458459.html
Authors
Achim Ahrens, Economic and Social Research Institute, Ireland
Christian B. Hansen, University of Chicago, USA
Mark E Schaffer, Heriot-Watt University, UK
Issues and questions
If you have encountered any issues with pdslasso, contact achim.ahrens(at)esri.ie and m.e.schaffer(at)hw.ac.uk. If you have questions about the use of pdslasso, contact us via Statalist.
关于我们
- 【Stata 连享会(公众号:StataChina)】由中山大学连玉君老师团队创办,旨在定期与大家分享 Stata 应用的各种经验和技巧。
- 公众号推文同步发布于 【简书-Stata连享会】 和 【知乎-连玉君Stata专栏】。可以在简书和知乎中搜索关键词
Stata
或Stata连享会
后关注我们。 - 点击推文底部【阅读原文】可以查看推文中的链接并下载相关资料。
联系我们
-
欢迎赐稿: 欢迎将您的文章或笔记投稿至
Stata连享会(公众号: StataChina)
,我们会保留您的署名;录用稿件达五篇
以上,即可免费获得 Stata 现场培训 (初级或高级选其一) 资格。 - 意见和资料: 欢迎您的宝贵意见,您也可以来信索取推文中提及的程序和数据。
- 招募英才: 欢迎加入我们的团队,一起学习 Stata。合作编辑或撰写稿件五篇以上,即可免费获得 Stata 现场培训 (初级或高级选其一) 资格。
- 联系邮件: StataChina@163.com
往期精彩推文

网友评论