引入相关依赖
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>1.1.1.RELEASE</version>
</dependency>
从依赖项的引入即可看出,当前spring boot(1.4.2)还不支持完全以配置项的配置来实现与kafka的无缝集成。也就意味着必须通过java config的方式进行手工配置。
定义kafka基础配置
与redisTemplate及jdbcTemplate等类似。spring同样提供了org.springframework.kafka.core.KafkaTemplate作为kafka相关api操作的入口。
import java.util.HashMap;
import java.util.Map;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.common.serialization.StringSerializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.core.DefaultKafkaProducerFactory;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.core.ProducerFactory;
@Configuration
@EnableKafka
public class KafkaProducerConfig {
public Map<String, Object> producerConfigs() {
Map<String, Object> props = new HashMap<>();
props.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.179.200:9092");
props.put(ProducerConfig.RETRIES_CONFIG, 0);
props.put(ProducerConfig.BATCH_SIZE_CONFIG, 4096);
props.put(ProducerConfig.LINGER_MS_CONFIG, 1);
props.put(ProducerConfig.BUFFER_MEMORY_CONFIG, 40960);
props.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
props.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class);
return props;
}
public ProducerFactory<String, String> producerFactory() {
return new DefaultKafkaProducerFactory<>(producerConfigs());
}
@Bean
public KafkaTemplate<String, String> kafkaTemplate() {
return new KafkaTemplate<String, String>(producerFactory());
}
}
KafkaTemplate依赖于ProducerFactory,而创建ProducerFactory时则通过一个Map指定kafka相关配置参数。通过KafkaTemplate对象即可实现消息发送。
kafkaTemplate.send("test-topic", "hello");
or
kafkaTemplate.send("test-topic", "key-1", "hello");
监听消息配置
import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.common.serialization.StringDeserializer;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.kafka.annotation.EnableKafka;
import org.springframework.kafka.config.ConcurrentKafkaListenerContainerFactory;
import org.springframework.kafka.config.KafkaListenerContainerFactory;
import org.springframework.kafka.core.ConsumerFactory;
import org.springframework.kafka.core.DefaultKafkaConsumerFactory;
import org.springframework.kafka.listener.ConcurrentMessageListenerContainer;
import java.util.HashMap;
import java.util.Map;
@Configuration
@EnableKafka
public class KafkaConsumerConfig {
@Bean
public KafkaListenerContainerFactory<ConcurrentMessageListenerContainer<String, String>> kafkaListenerContainerFactory() {
ConcurrentKafkaListenerContainerFactory<String, String> factory = new ConcurrentKafkaListenerContainerFactory<>();
factory.setConsumerFactory(consumerFactory());
factory.setConcurrency(3);
factory.getContainerProperties().setPollTimeout(3000);
return factory;
}
public ConsumerFactory<String, String> consumerFactory() {
return new DefaultKafkaConsumerFactory<>(consumerConfigs());
}
public Map<String, Object> consumerConfigs() {
Map<String, Object> propsMap = new HashMap<>();
propsMap.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG, "192.168.179.200:9092");
propsMap.put(ConsumerConfig.ENABLE_AUTO_COMMIT_CONFIG, false);
propsMap.put(ConsumerConfig.AUTO_COMMIT_INTERVAL_MS_CONFIG, "100");
propsMap.put(ConsumerConfig.SESSION_TIMEOUT_MS_CONFIG, "15000");
propsMap.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
propsMap.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG, StringDeserializer.class);
propsMap.put(ConsumerConfig.GROUP_ID_CONFIG, "test-group");
propsMap.put(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "latest");
return propsMap;
}
@Bean
public Listener listener() {
return new Listener();
}
}
实现消息监听的最终目标是得到监听器对象。该监听器对象自行实现。
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.springframework.kafka.annotation.KafkaListener;
import java.util.Optional;
public class Listener {
@KafkaListener(topics = {"test-topic"})
public void listen(ConsumerRecord<?, ?> record) {
Optional<?> kafkaMessage = Optional.ofNullable(record.value());
if (kafkaMessage.isPresent()) {
Object message = kafkaMessage.get();
System.out.println("listen1 " + message);
}
}
}
只需用@KafkaListener指定哪个方法处理消息即可。同时指定该方法用于监听kafka中哪些topic。
注意事项
定义监听消息配置时,GROUP_ID_CONFIG配置项的值用于指定消费者组的名称,如果同组中存在多个监听器对象则只有一个监听器对象能收到消息。
@KafkaListener中topics属性用于指定kafka topic名称,topic名称由消息生产者指定,也就是由kafkaTemplate在发送消息时指定。
KEY_DESERIALIZER_CLASS_CONFIG与VALUE_DESERIALIZER_CLASS_CONFIG指定key和value的编码、解码策略。kafka用key值确定value存放在哪个分区中。
后记
时间是解决问题的有效手段之一。
在spring boot 1.5版本中即可实现spring boot与kafka Auto-configuration
网友评论
public void processMessage(String content, Acknowledgment ack) {
logger.info("message={}", content);
ack.acknowledge();
}
or
kafkaTemplate.send("test-topic", "key-1", "hello");我不明白作者您这是在那个文件里写的,我刚刚学习springboot,真的不清楚这个