美文网首页Python,web开发,前端技术分享互联网科技大数据 爬虫Python AI Sql
10分钟教你用python动画演示深度优先算法搜寻逃出迷宫的路径

10分钟教你用python动画演示深度优先算法搜寻逃出迷宫的路径

作者: 2890bd62c72a | 来源:发表于2019-08-12 15:30 被阅读6次

    深度优先算法(DFS 算法)是什么?

    寻找起始节点与目标节点之间路径的算法,常用于搜索逃出迷宫的路径。主要思想是,从入口开始,依次搜寻周围可能的节点坐标,但不会重复经过同一个节点,且不能通过障碍节点。如果走到某个节点发现无路可走,那么就会回退到上一个节点,重新选择其他路径。直到找到出口,或者退到起点再也无路可走,游戏结束。当然,深度优先算法,只要查找到一条行得通的路径,就会停止搜索;也就是说只要有路可走,深度优先算法就不会回退到上一步。

    如果你依然在编程的世界里迷茫,可以加入我们的Python学习扣qun:784758214,看看前辈们是如何学习的!交流经验!自己是一名高级python开发工程师,从基础的python脚本到web开发、爬虫、django、数据挖掘等,零基础到项目实战的资料都有整理。送给每一位python的小伙伴!分享一些学习的方法和需要注意的小细节,点击加入我们的 python学习者聚集地

    下图是使用 DFS 算法搜寻出来的一条路径:

    总结一下:

    从起点开始,查询下一步走得通的节点,将这些可能的节点压入堆栈中,已经走过的节点不再尝试。查询完毕之后,从堆栈中取出一个节点,查询该节点周围是否存在走得通的节点。如果不存在可能的节点,就继续从堆栈中取一个节点。重复以上操作,直到当前节点为终点,或者堆栈中再无节点。

    定义数据:

    • 起始节点与目标节点
    • 存储节点的堆栈

    定义辅助函数

    • 获取下一节点的函数: successor
    • 判断是否为终点的函数: test_goal

    首先,我们来定义栈这种数据结构,栈是一种后进先出的数据结构。

    因为之后的广度优先搜索会使用到队列,A* 算法会用到优先队列,我们定义了抽象基类,以便后续使用。deque 是双端队列,与内置类型 list 操作类似,但头部与尾部插入和删除操作的时间复杂度均为 O(1)。

    # utils.py
    from abc import abstractmethod, ABC
    from collections import deque
    
    class Base(ABC):
        def __init__(self):
            self._container = deque()
    
        @abstractmethod
        def push(self, value):
            """push item"""
    
        @abstractmethod
        def pop(self):
            """pop item"""
    
        def __len__(self):
            return len(self._container)
    
        def __repr__(self):
            return f'{type(self).__name__}({list(self._container)})'
    
    class Stack(Base):
        def push(self, value):
            self._container.append(value)
    
        def pop(self):
            return self._container.pop()
    
    

    下面我们来定义 dfs 函数。其中,initial 为初始节点, s 为栈,marked 用来记录经过的节点。successor 函数用来搜寻下一个可能的节点,test_goal 函数用来判断该节点是否为目标节点。children 为可能的节点列表,遍历这些节点,将没有走过的节点压入栈中,并做记录。

    # find_path.py
    from utils import Stack
    
    def dfs(initial, _next = successor, _test = test_goal):
        s: Stack = Stack()
        marked = {initial}
        s.push(initial)
        while s:
            parent: state = s.pop()
            if _test(parent):
                return parent
            children = _next(parent)
            for child in children:
                if child not in marked:
                    marked.add(child)
                    s.push(child)
    
    

    接下来,我们使用 DFS 算法寻找迷宫路径,并对搜寻到的迷宫路径进行可视化演示。

    首先使用枚举,来表示路径的颜色, EMPTY 为正常节点,BLOCKED 为障碍节点,START 为迷宫入口,END 为迷宫出口,PATH 为搜寻的路径。

    
    from enum import IntEnum
    
    class Cell(IntEnum):
        EMPTY = 255
        BLOCKED = 0
        START = 100
        END = 200
        PATH = 150
    

    接下来,我们来定义迷宫。首先,我们采用 Namedtuple 来定义迷宫每个节点的坐标:

    
    class MazeLocation(NamedTuple):
        row: int
        col: int
    
    

    首先为了方便确定节点之间的关系,我们在 Maze 类中定义了一个内部类 _Node, 用来记录节点的状态,及节点的父节点。

    
    class _Node:
        def __init__(self, state, parent):
            self.state = state
            self.parent = parent
    
    

    接着初始化,确定入口与出口的坐标,使用 np.random.choice 函数随机生成迷宫,并标记入口和出口。

    
    def __init__(self, rows: int = 10, cols: int = 10,
                 sparse: float = 0.2, seed: int = 365,
                 start: MazeLocation = MazeLocation(0, 0),
                 end: MazeLocation = MazeLocation(9, 9), *,
                 grid: Optional[np.array] = None) -> None:
        np.random.seed(seed)
        self._start: MazeLocation = start
        self._end: MazeLocation = end
        self._grid: np.array = np.random.choice([Cell.BLOCKED, Cell.EMPTY],
                                                    (rows, cols), p=[sparse, 1 - sparse])
        self._grid[start] = Cell.START
        self._grid[end] = Cell.END
    
    

    其次是 test_goal 方法,只要该节点坐标与目标节点相即可。

    
    def _test_goal(self, m1: MazeLocation) -> bool:
        return m1 == self._end
    
    

    再就是 successor 方法,只要上下左右方向的节点不是障碍节点且在边界之内,就纳入考虑范围,加入列表之中。

    
     List[MazeLocation]:
        location: List[MazeLocation] = []
        row, col = self._grid.shape
        if m1.row + 1 < row and self._grid[m1.row + 1, m1.col] != Cell.BLOCKED:
            location.append(MazeLocation(m1.row + 1, m1.col))
        if m1.row - 1 >= 0 and self._grid[m1.row - 1, m1.col] != Cell.BLOCKED:
            location.append(MazeLocation(m1.row - 1, m1.col))
        if m1.col + 1 < col and self._grid[m1.row, m1.col + 1] != Cell.BLOCKED:
            location.append(MazeLocation(m1.row, m1.col + 1))
        if m1.col - 1 >= 0 and self._grid[m1.row, m1.col - 1] != Cell.BLOCKED:
            location.append(MazeLocation(m1.row, m1.col - 1))
        return location
    
    

    显示路径, pause 为显示图像的间隔,plot 为是否绘图标志。通过目标节点出发,遍历每一个节点的父节点,直到到达初始节点,并绘制路径图。

    
     None:
        if pause <= 0:
            raise ValueError('pause must be more than 0')
        path: Maze._Node = self._search()
        if path is None:
            print('没有找到路径')
            return
        path = path.parent
        while path.parent is not None:
            self._grid[path.state] = Cell.PATH
            if plot:
                self._draw(pause)
            path = path.parent
    
        print('Path Done')
    
    

    为了使用 DFS 算法,我们定义了 DepthFirstSearch 类,继承迷宫类。DepthFirstSearch 类重写了基类的 _search 方法,与我们之前定义的 dfs 函数定义相差无几。

    
    class DepthFirstSearch(Maze):
        def _search(self):
            stack: Stack = Stack()
            initial: DepthFirstSearch._Node = self._Node(self._start, None)
            marked: Set[MazeLocation] = {initial.state}
            stack.push(initial)
            while stack:
                parent: DepthFirstSearch._Node = stack.pop()
                state: MazeLocation = parent.state
                if self._test_goal(state):
                    return parent
                children: List[MazeLocation] = self._success(state)
                for child in children:
                    if child not in marked:
                        marked.add(child)
                        stack.push(self._Node(child, parent))
    
    在学习过程中有什么不懂得可以加我的
    python学习交流扣扣qun,784758214
    群里有不错的学习视频教程、开发工具与电子书籍。
    与你分享python企业当下人才需求及怎么从零基础学习好python,和学习什么内容
    

    相关文章

      网友评论

        本文标题:10分钟教你用python动画演示深度优先算法搜寻逃出迷宫的路径

        本文链接:https://www.haomeiwen.com/subject/cersjctx.html