滑动验证码

作者: _Caesar | 来源:发表于2018-04-20 23:55 被阅读231次

    我们可以借助插件来做
    打开插件,找到自己需要的验证码
    筛选有用的路径
    把对应的视图函数也拿过来,注意还需要一个geetest.py的文件

    具体实
    urls
    #滑动验证码
         url(r'^pc-geetest/register', pcgetcaptcha, name='pcgetcaptcha'),
         url(r'^pc-geetest/ajax_validate', pcajax_validate, name='pcajax_validate'),
    
    views
    from app01.geetest import GeetestLib
    pc_geetest_id = "b46d1900d0a894591916ea94ea91bd2c"
    pc_geetest_key = "36fc3fe98530eea08dfc6ce76e3d24c4"
    mobile_geetest_id = "7c25da6fe21944cfe507d2f9876775a9"
    mobile_geetest_key = "f5883f4ee3bd4fa8caec67941de1b903"
    # 滑动验证码
    def pcgetcaptcha(request):
        user_id = 'test'
        gt = GeetestLib(pc_geetest_id, pc_geetest_key)
        status = gt.pre_process(user_id)
        request.session[gt.GT_STATUS_SESSION_KEY] = status
        request.session["user_id"] = user_id
        response_str = gt.get_response_str()
        return HttpResponse(response_str)
    # 滑动验证码
    def pcajax_validate(request):
    
        if request.method == "POST":
            # 验证的验证码
            ret = {"flag": False, "error_msg": None}
            gt = GeetestLib(pc_geetest_id, pc_geetest_key)
            challenge = request.POST.get(gt.FN_CHALLENGE, '')
            validate = request.POST.get(gt.FN_VALIDATE, '')
            seccode = request.POST.get(gt.FN_SECCODE, '')
            status = request.session[gt.GT_STATUS_SESSION_KEY]
            user_id = request.session["user_id"]
            print("status",status)
            if status:
                result = gt.success_validate(challenge, validate, seccode, user_id)
            else:
                result = gt.failback_validate(challenge, validate, seccode)
            if result:  #如果验证验证码正确,就验证用户名是否正确
                username = request.POST.get("username")
                password = request.POST.get("password")
    
               # 验证用户名和密码
                user = auth.authenticate(username=username, password=password)
                if user:
                    # 如果验证成功就让登录
                    ret["flag"] = True
                    auth.login(request, user)
                else:
                    ret["error_msg"] = "用户名和密码错误"
            else:
                ret["error_msg"] = "验证码错误"
            return HttpResponse(json.dumps(ret))
        else:
            return render(request, "login.html")
    
    views
    
    login.html
    <!DOCTYPE html>
    <html lang="en">
    <head>
        <meta charset="UTF-8">
        <meta http-equiv="X-UA-Compatible" content="IE=edge">
        <meta name="viewport" content="width=device-width">
        <title>Title</title>
        <link rel="stylesheet" href="/static/bootstrap-3.3.7-dist/css/bootstrap.min.css">
        <link rel="stylesheet" href="/static/css/login.css">
        <script src="/static/jquery-3.2.1.min.js"></script>
       滑动验证码的时候导入
        <script src="http://static.geetest.com/static/tools/gt.js"></script>
        <script src="/static/bootstrap-3.3.7-dist/js/bootstrap.min.js"></script>
        <script src="https://cdn.bootcss.com/jquery-cookie/1.4.1/jquery.cookie.js"></script>
    
    </head>
    <body>
    <div class="container">
        <div class="row">
            <div class="col-md-1=10">
                <form class="form-horizontal" id="form_data" action="/login/" method="post">
                    {% csrf_token %}
                    <div class="form-group">
                        <label for="username" class="col-sm-2 control-label">用户名</label>
                        <div class="col-sm-5">
                            <input type="text" class="form-control" id="username" placeholder="username" name="username">
                        </div>
                    </div>
                    <div class="form-group">
                        <label for="password" class="col-sm-2 control-label">密码</label>
                        <div class="col-sm-5">
                            <input type="password" class="form-control" id="password" placeholder="password" name="password">
                        </div>
                    </div>
                    <div class="form-group">
                        <div class="row">
                            <div class="col-md-6 col-md-offset-1">
    {#                            文字部分#}
                                <label for="vialdCode" class="col-sm-2 control-label">验证码</label>
                                 <div class="col-sm-5">
                                    <input type="text" class="form-control vialdCode_text" id="vialdCode" placeholder="验证码" name="vialdCode">
                                </div>
    {#                            图片部分#}
                                 <div class="col-md-5">
                                <img class="vialdCode_img" src="/get_vaildCode_img/" alt="" width="200px" height="100px">
    {#                                 <a href=""></a>     #}
                            </div>
                            </div>
    
                        </div>
                    </div>
                    <div class="form-group">
                        <div class="col-sm-offset-2 col-sm-10">
                            <div class="checkbox">
                                <label>
                                    <input type="checkbox"> 下次自动登录
                                </label>
                            </div>
                        </div>
                    </div>
                    <div class="form-group">
                        <div class="col-sm-offset-2 col-sm-10">
                            <p>
                                <button type="button" class="btn btn-success login" id="submit">登录</button>
                                <span class="error has-error"></span></p>
                            <p>
                                <button type="button" class="btn btn-primary register">注册</button>
                            </p>
                        </div>
                        <div id="popup-captcha"></div>
                    </div>
                </form>
            </div>
        </div>
    </div>
    {#滑动验证码#}
    <script>
        var handlerPopup = function (captchaObj) {
            $("#submit").click(function () {
                captchaObj.show();
            });
            //定时函数
             $(".login").click(function () {
                 function foo() {
                     $(".error").html("")
                 }
    
                 // 成功的回调
                 captchaObj.onSuccess(function () {
                     var validate = captchaObj.getValidate();
                     $.ajax({
                         url: "/pc-geetest/ajax_validate", // 进行二次验证
                         type: "post",
                         dataType: "json",
                         headers: {"X-CSRFToken": $.cookie('csrftoken')},
                         data: {
                             username: $('#username').val(),
                             password: $('#password').val(),
                             geetest_challenge: validate.geetest_challenge,
                             geetest_validate: validate.geetest_validate,
                             geetest_seccode: validate.geetest_seccode
                         },
                         success: function (data) {
                             console.log(data);
                             if (data["flag"]) {
    {#                             alert(location.search);#}
    {#                             alert(location.search.slice(6));#}
    {#                             方式一#}
    {#                             if (location.search.slice(6)) {#}
                                     {#                            如果用户没有登录点赞的时候,当用户后来又登录了,就直接让跳转到当前点赞的那个路径#}
    {#                                 location.href = location.search.slice(6)#}
    {#                             }#}
    {#                             else {#}
    {#                                 window.location.href = '/index/'#}
    {#                             }#}
    {#                             方式二:#}
                                 alert($.cookie("next_path"));
                                 if ($.cookie("next_path")){
                                     location.href = $.cookie("next_path")
                                 }
                                 else{
                                     location.href = "/index/"
                                 }
                             }
                             else {
                                 $(".error").html(data["error_msg"]);
                                 setTimeout(foo, 3000)
                             }
                         }
                     });
                 });
    
             });
                 // 将验证码加到id为captcha的元素里
                 captchaObj.appendTo("#popup-captcha");
                 // 更多接口参考:http://www.geetest.com/install/sections/idx-client-sdk.html
             };
        // 验证开始需要向网站主后台获取id,challenge,success(是否启用failback)
        $.ajax({
            url: "/pc-geetest/register?t=" + (new Date()).getTime(), // 加随机数防止缓存
            type: "get",
            dataType: "json",
            success: function (data) {
                // 使用initGeetest接口
                // 参数1:配置参数
                // 参数2:回调,回调的第一个参数验证码对象,之后可以使用它做appendTo之类的事件
                initGeetest({
                    gt: data.gt,
                    challenge: data.challenge,
                    product: "popup", // 产品形式,包括:float,embed,popup。注意只对PC版验证码有效
                    offline: !data.success // 表示用户后台检测极验服务器是否宕机,一般不需要关注
                    // 更多配置参数请参见:http://www.geetest.com/install/sections/idx-client-sdk.html#config
                }, handlerPopup);
            }
        });
    </script>
    
    login.html
    

    爬虫

    破解极验滑动验证码

    一些网站会在正常运行的正常的账号密码认证之外加上一些验证
    码,以此来明确地区分人行为,从一定程度上达到反爬的效果,对于简单的验证码tesserocr就可以搞定如下


    图片.png

    但一些网站加入了滑动验证码,


    图片.png
    对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会特别的麻烦我们可以用selenium驱动浏览器来解决这个问题,大致分为
    #1、输入账号、密码,然后点击登陆
    #2、点击按钮,弹出没有缺口的图
    #3、针对没有缺口的图片进行截图
    #4、点击滑动按钮,弹出有缺口的图
    #5、针对有缺口的图片进行截图
    #6、对比两张图片,找出缺口,即滑动的位移
    #7、按照人的行为行为习惯,把总位移切成一段段小的位移
    #8、按照位移移动
    #9、完成登录
    

    实现

    安装:selenium+chrome/phantomjs
    
    #安装:Pillow
    Pillow:基于PIL,处理python 3.x的图形图像库.因为PIL只能处理到python 2.x,而这个模块能处理Python3.x,目前用它做图形的很多.
    http://www.cnblogs.com/apexchu/p/4231041.html
    
    C:\Users\Administrator>pip3 install pillow
    C:\Users\Administrator>python3
    Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 18:41:36) [MSC v.1900 64 bit (AMD64)] on win32
    Type "help", "copyright", "credits" or "license" for more information.
    >>> from PIL import Image
    >>>
    

    view.code

    from selenium import webdriver
    from selenium.webdriver import ActionChains
    from selenium.webdriver.common.by import By
    from selenium.webdriver.common.keys import Keys
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.webdriver.support.wait import WebDriverWait
    from PIL import Image
    import time
    
    def get_snap():
        '''
        对整个网页截图,保存成图片,然后用PIL.Image拿到图片对象
        :return: 图片对象
        '''
        driver.save_screenshot('snap.png')
        page_snap_obj=Image.open('snap.png')
        return page_snap_obj
    
    def get_image():
        '''
        从网页的网站截图中,截取验证码图片
        :return: 验证码图片
        '''
        img=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_canvas_img')))
        time.sleep(2) #保证图片刷新出来
        localtion=img.location
        size=img.size
    
        top=localtion['y']
        bottom=localtion['y']+size['height']
        left=localtion['x']
        right=localtion['x']+size['width']
    
        page_snap_obj=get_snap()
        crop_imag_obj=page_snap_obj.crop((left,top,right,bottom))
        return crop_imag_obj
    
    
    def get_distance(image1,image2):
        '''
        拿到滑动验证码需要移动的距离
        :param image1:没有缺口的图片对象
        :param image2:带缺口的图片对象
        :return:需要移动的距离
        '''
        threshold=60
        left=57
        for i in range(left,image1.size[0]):
            for j in range(image1.size[1]):
                rgb1=image1.load()[i,j]
                rgb2=image2.load()[i,j]
                res1=abs(rgb1[0]-rgb2[0])
                res2=abs(rgb1[1]-rgb2[1])
                res3=abs(rgb1[2]-rgb2[2])
                if not (res1 < threshold and res2 < threshold and res3 < threshold):
                    return i-7 #经过测试,误差为大概为7
        return i-7 #经过测试,误差为大概为7
    
    
    def get_tracks(distance):
        '''
        拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
        匀变速运动基本公式:
        ①v=v0+at
        ②s=v0t+½at²
        ③v²-v0²=2as
    
        :param distance: 需要移动的距离
        :return: 存放每0.3秒移动的距离
        '''
        #初速度
        v=0
        #单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
        t=0.3
        #位移/轨迹列表,列表内的一个元素代表0.2s的位移
        tracks=[]
        #当前的位移
        current=0
        #到达mid值开始减速
        mid=distance*4/5
    
        while current < distance:
            if current < mid:
                # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
                a= 2
            else:
                a=-3
    
            #初速度
            v0=v
            #0.2秒时间内的位移
            s=v0*t+0.5*a*(t**2)
            #当前的位置
            current+=s
            #添加到轨迹列表
            tracks.append(round(s))
    
            #速度已经达到v,该速度作为下次的初速度
            v=v0+a*t
        return tracks
    
    
    try:
        driver=webdriver.Chrome()
        driver.get('https://account.geetest.com/login')
        wait=WebDriverWait(driver,10)
    
        #步骤一:先点击按钮,弹出没有缺口的图片
        button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_radar_tip')))
        button.click()
    
        #步骤二:拿到没有缺口的图片
        image1=get_image()
    
        #步骤三:点击拖动按钮,弹出有缺口的图片
        button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
        button.click()
    
        #步骤四:拿到有缺口的图片
        image2=get_image()
    
        # print(image1,image1.size)
        # print(image2,image2.size)
    
        #步骤五:对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
        distance=get_distance(image1,image2)
    
        #步骤六:模拟人的行为习惯(先匀加速拖动后匀减速拖动),把需要拖动的总距离分成一段一段小的轨迹
        tracks=get_tracks(distance)
        print(tracks)
        print(image1.size)
        print(distance,sum(tracks))
    
    
        #步骤七:按照轨迹拖动,完全验证
        button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
        ActionChains(driver).click_and_hold(button).perform()
        for track in tracks:
            ActionChains(driver).move_by_offset(xoffset=track,yoffset=0).perform()
        else:
            ActionChains(driver).move_by_offset(xoffset=3,yoffset=0).perform() #先移过一点
            ActionChains(driver).move_by_offset(xoffset=-3,yoffset=0).perform() #再退回来,是不是更像人了
    
        time.sleep(0.5) #0.5秒后释放鼠标
        ActionChains(driver).release().perform()
    
    
        #步骤八:完成登录
        input_email=driver.find_element_by_id('email')
        input_password=driver.find_element_by_id('password')
        button=wait.until(EC.element_to_be_clickable((By.CLASS_NAME,'login-btn')))
    
        input_email.send_keys('18611453110@163.com')
        input_password.send_keys('linhaifeng123')
        # button.send_keys(Keys.ENTER)
        button.click()
    
        import time
        time.sleep(200)
    finally:
        driver.close()
    
    

    案列:

    破解博客园后台登录

    from selenium import webdriver
    from selenium.webdriver import ActionChains
    from selenium.webdriver.common.by import By
    from selenium.webdriver.common.keys import Keys
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.webdriver.support.wait import WebDriverWait
    from PIL import Image
    import time
    
    def get_snap():
        driver.save_screenshot('full_snap.png')
        page_snap_obj=Image.open('full_snap.png')
        return page_snap_obj
    
    def get_image():
        img=driver.find_element_by_class_name('geetest_canvas_img')
        time.sleep(2)
        location=img.location
        size=img.size
    
        left=location['x']
        top=location['y']
        right=left+size['width']
        bottom=top+size['height']
    
        page_snap_obj=get_snap()
        image_obj=page_snap_obj.crop((left,top,right,bottom))
        # image_obj.show()
        return image_obj
    
    def get_distance(image1,image2):
        start=57
        threhold=60
    
        for i in range(start,image1.size[0]):
            for j in range(image1.size[1]):
                rgb1=image1.load()[i,j]
                rgb2=image2.load()[i,j]
                res1=abs(rgb1[0]-rgb2[0])
                res2=abs(rgb1[1]-rgb2[1])
                res3=abs(rgb1[2]-rgb2[2])
                # print(res1,res2,res3)
                if not (res1 < threhold and res2 < threhold and res3 < threhold):
                    return i-7
        return i-7
    
    def get_tracks(distance):
        distance+=20 #先滑过一点,最后再反着滑动回来
        v=0
        t=0.2
        forward_tracks=[]
    
        current=0
        mid=distance*3/5
        while current < distance:
            if current < mid:
                a=2
            else:
                a=-3
    
            s=v*t+0.5*a*(t**2)
            v=v+a*t
            current+=s
            forward_tracks.append(round(s))
    
        #反着滑动到准确位置
        back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20
    
        return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}
    
    try:
        # 1、输入账号密码回车
        driver = webdriver.Chrome()
        driver.implicitly_wait(3)
        driver.get('https://passport.cnblogs.com/user/signin')
    
        username = driver.find_element_by_id('input1')
        pwd = driver.find_element_by_id('input2')
        signin = driver.find_element_by_id('signin')
    
        username.send_keys('linhaifeng')
        pwd.send_keys('xxxxx')
        signin.click()
    
        # 2、点击按钮,得到没有缺口的图片
        button = driver.find_element_by_class_name('geetest_radar_tip')
        button.click()
    
        # 3、获取没有缺口的图片
        image1 = get_image()
    
        # 4、点击滑动按钮,得到有缺口的图片
        button = driver.find_element_by_class_name('geetest_slider_button')
        button.click()
    
        # 5、获取有缺口的图片
        image2 = get_image()
    
        # 6、对比两种图片的像素点,找出位移
        distance = get_distance(image1, image2)
    
        # 7、模拟人的行为习惯,根据总位移得到行为轨迹
        tracks = get_tracks(distance)
        print(tracks)
    
        # 8、按照行动轨迹先正向滑动,后反滑动
        button = driver.find_element_by_class_name('geetest_slider_button')
        ActionChains(driver).click_and_hold(button).perform()
    
        # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
        for track in tracks['forward_tracks']:
            ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()
    
        # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
        time.sleep(0.5)
        for back_track in tracks['back_tracks']:
            ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()
    
        # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
        ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
        ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    
        # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
        time.sleep(0.5)
        ActionChains(driver).release().perform()
    
        time.sleep(10)  # 睡时间长一点,确定登录成功
    finally:
        driver.close()
    

    修订版本

    from selenium import webdriver
    from selenium.webdriver import ActionChains
    from selenium.webdriver.common.by import By
    from selenium.webdriver.common.keys import Keys
    from selenium.webdriver.support import expected_conditions as EC
    from selenium.webdriver.support.wait import WebDriverWait
    from PIL import Image
    import time
    
    def get_snap(driver):
        driver.save_screenshot('full_snap.png')
        page_snap_obj=Image.open('full_snap.png')
        return page_snap_obj
    
    def get_image(driver):
        img=driver.find_element_by_class_name('geetest_canvas_img')
        time.sleep(2)
        location=img.location
        size=img.size
    
        left=location['x']
        top=location['y']
        right=left+size['width']
        bottom=top+size['height']
    
        page_snap_obj=get_snap(driver)
        image_obj=page_snap_obj.crop((left,top,right,bottom))
        # image_obj.show()
        return image_obj
    
    def get_distance(image1,image2):
        start=57
        threhold=60
    
        for i in range(start,image1.size[0]):
            for j in range(image1.size[1]):
                rgb1=image1.load()[i,j]
                rgb2=image2.load()[i,j]
                res1=abs(rgb1[0]-rgb2[0])
                res2=abs(rgb1[1]-rgb2[1])
                res3=abs(rgb1[2]-rgb2[2])
                # print(res1,res2,res3)
                if not (res1 < threhold and res2 < threhold and res3 < threhold):
                    return i-7
        return i-7
    
    def get_tracks(distance):
        distance+=20 #先滑过一点,最后再反着滑动回来
        v=0
        t=0.2
        forward_tracks=[]
    
        current=0
        mid=distance*3/5
        while current < distance:
            if current < mid:
                a=2
            else:
                a=-3
    
            s=v*t+0.5*a*(t**2)
            v=v+a*t
            current+=s
            forward_tracks.append(round(s))
    
        #反着滑动到准确位置
        back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20
    
        return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}
    
    def crack(driver): #破解滑动认证
        # 1、点击按钮,得到没有缺口的图片
        button = driver.find_element_by_class_name('geetest_radar_tip')
        button.click()
    
        # 2、获取没有缺口的图片
        image1 = get_image(driver)
    
        # 3、点击滑动按钮,得到有缺口的图片
        button = driver.find_element_by_class_name('geetest_slider_button')
        button.click()
    
        # 4、获取有缺口的图片
        image2 = get_image(driver)
    
        # 5、对比两种图片的像素点,找出位移
        distance = get_distance(image1, image2)
    
        # 6、模拟人的行为习惯,根据总位移得到行为轨迹
        tracks = get_tracks(distance)
        print(tracks)
    
        # 7、按照行动轨迹先正向滑动,后反滑动
        button = driver.find_element_by_class_name('geetest_slider_button')
        ActionChains(driver).click_and_hold(button).perform()
    
        # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
        for track in tracks['forward_tracks']:
            ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()
    
        # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
        time.sleep(0.5)
        for back_track in tracks['back_tracks']:
            ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()
    
        # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
        ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
        ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()
    
        # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
        time.sleep(0.5)
        ActionChains(driver).release().perform()
    
    def login_cnblogs(username,password):
        driver = webdriver.Chrome()
        try:
            # 1、输入账号密码回车
            driver.implicitly_wait(3)
            driver.get('https://passport.cnblogs.com/user/signin')
    
            input_username = driver.find_element_by_id('input1')
            input_pwd = driver.find_element_by_id('input2')
            signin = driver.find_element_by_id('signin')
    
            input_username.send_keys(username)
            input_pwd.send_keys(password)
            signin.click()
    
            # 2、破解滑动认证
            crack(driver)
    
            time.sleep(10)  # 睡时间长一点,确定登录成功
        finally:
            driver.close()
    
    if __name__ == '__main__':
        login_cnblogs(username='linhaifeng',password='xxxx')
    
    

    相关文章

      网友评论

      • 严北:geetest.py怎么获取呢?
        _Caesar:@严北 极验官网下载的一个包

      本文标题:滑动验证码

      本文链接:https://www.haomeiwen.com/subject/ciakkftx.html