滑动验证码

作者: _Caesar | 来源:发表于2018-04-20 23:55 被阅读231次

我们可以借助插件来做
打开插件,找到自己需要的验证码
筛选有用的路径
把对应的视图函数也拿过来,注意还需要一个geetest.py的文件

具体实
urls
#滑动验证码
     url(r'^pc-geetest/register', pcgetcaptcha, name='pcgetcaptcha'),
     url(r'^pc-geetest/ajax_validate', pcajax_validate, name='pcajax_validate'),
views
from app01.geetest import GeetestLib
pc_geetest_id = "b46d1900d0a894591916ea94ea91bd2c"
pc_geetest_key = "36fc3fe98530eea08dfc6ce76e3d24c4"
mobile_geetest_id = "7c25da6fe21944cfe507d2f9876775a9"
mobile_geetest_key = "f5883f4ee3bd4fa8caec67941de1b903"
# 滑动验证码
def pcgetcaptcha(request):
    user_id = 'test'
    gt = GeetestLib(pc_geetest_id, pc_geetest_key)
    status = gt.pre_process(user_id)
    request.session[gt.GT_STATUS_SESSION_KEY] = status
    request.session["user_id"] = user_id
    response_str = gt.get_response_str()
    return HttpResponse(response_str)
# 滑动验证码
def pcajax_validate(request):

    if request.method == "POST":
        # 验证的验证码
        ret = {"flag": False, "error_msg": None}
        gt = GeetestLib(pc_geetest_id, pc_geetest_key)
        challenge = request.POST.get(gt.FN_CHALLENGE, '')
        validate = request.POST.get(gt.FN_VALIDATE, '')
        seccode = request.POST.get(gt.FN_SECCODE, '')
        status = request.session[gt.GT_STATUS_SESSION_KEY]
        user_id = request.session["user_id"]
        print("status",status)
        if status:
            result = gt.success_validate(challenge, validate, seccode, user_id)
        else:
            result = gt.failback_validate(challenge, validate, seccode)
        if result:  #如果验证验证码正确,就验证用户名是否正确
            username = request.POST.get("username")
            password = request.POST.get("password")

           # 验证用户名和密码
            user = auth.authenticate(username=username, password=password)
            if user:
                # 如果验证成功就让登录
                ret["flag"] = True
                auth.login(request, user)
            else:
                ret["error_msg"] = "用户名和密码错误"
        else:
            ret["error_msg"] = "验证码错误"
        return HttpResponse(json.dumps(ret))
    else:
        return render(request, "login.html")

views
login.html
<!DOCTYPE html>
<html lang="en">
<head>
    <meta charset="UTF-8">
    <meta http-equiv="X-UA-Compatible" content="IE=edge">
    <meta name="viewport" content="width=device-width">
    <title>Title</title>
    <link rel="stylesheet" href="/static/bootstrap-3.3.7-dist/css/bootstrap.min.css">
    <link rel="stylesheet" href="/static/css/login.css">
    <script src="/static/jquery-3.2.1.min.js"></script>
   滑动验证码的时候导入
    <script src="http://static.geetest.com/static/tools/gt.js"></script>
    <script src="/static/bootstrap-3.3.7-dist/js/bootstrap.min.js"></script>
    <script src="https://cdn.bootcss.com/jquery-cookie/1.4.1/jquery.cookie.js"></script>

</head>
<body>
<div class="container">
    <div class="row">
        <div class="col-md-1=10">
            <form class="form-horizontal" id="form_data" action="/login/" method="post">
                {% csrf_token %}
                <div class="form-group">
                    <label for="username" class="col-sm-2 control-label">用户名</label>
                    <div class="col-sm-5">
                        <input type="text" class="form-control" id="username" placeholder="username" name="username">
                    </div>
                </div>
                <div class="form-group">
                    <label for="password" class="col-sm-2 control-label">密码</label>
                    <div class="col-sm-5">
                        <input type="password" class="form-control" id="password" placeholder="password" name="password">
                    </div>
                </div>
                <div class="form-group">
                    <div class="row">
                        <div class="col-md-6 col-md-offset-1">
{#                            文字部分#}
                            <label for="vialdCode" class="col-sm-2 control-label">验证码</label>
                             <div class="col-sm-5">
                                <input type="text" class="form-control vialdCode_text" id="vialdCode" placeholder="验证码" name="vialdCode">
                            </div>
{#                            图片部分#}
                             <div class="col-md-5">
                            <img class="vialdCode_img" src="/get_vaildCode_img/" alt="" width="200px" height="100px">
{#                                 <a href=""></a>     #}
                        </div>
                        </div>

                    </div>
                </div>
                <div class="form-group">
                    <div class="col-sm-offset-2 col-sm-10">
                        <div class="checkbox">
                            <label>
                                <input type="checkbox"> 下次自动登录
                            </label>
                        </div>
                    </div>
                </div>
                <div class="form-group">
                    <div class="col-sm-offset-2 col-sm-10">
                        <p>
                            <button type="button" class="btn btn-success login" id="submit">登录</button>
                            <span class="error has-error"></span></p>
                        <p>
                            <button type="button" class="btn btn-primary register">注册</button>
                        </p>
                    </div>
                    <div id="popup-captcha"></div>
                </div>
            </form>
        </div>
    </div>
</div>
{#滑动验证码#}
<script>
    var handlerPopup = function (captchaObj) {
        $("#submit").click(function () {
            captchaObj.show();
        });
        //定时函数
         $(".login").click(function () {
             function foo() {
                 $(".error").html("")
             }

             // 成功的回调
             captchaObj.onSuccess(function () {
                 var validate = captchaObj.getValidate();
                 $.ajax({
                     url: "/pc-geetest/ajax_validate", // 进行二次验证
                     type: "post",
                     dataType: "json",
                     headers: {"X-CSRFToken": $.cookie('csrftoken')},
                     data: {
                         username: $('#username').val(),
                         password: $('#password').val(),
                         geetest_challenge: validate.geetest_challenge,
                         geetest_validate: validate.geetest_validate,
                         geetest_seccode: validate.geetest_seccode
                     },
                     success: function (data) {
                         console.log(data);
                         if (data["flag"]) {
{#                             alert(location.search);#}
{#                             alert(location.search.slice(6));#}
{#                             方式一#}
{#                             if (location.search.slice(6)) {#}
                                 {#                            如果用户没有登录点赞的时候,当用户后来又登录了,就直接让跳转到当前点赞的那个路径#}
{#                                 location.href = location.search.slice(6)#}
{#                             }#}
{#                             else {#}
{#                                 window.location.href = '/index/'#}
{#                             }#}
{#                             方式二:#}
                             alert($.cookie("next_path"));
                             if ($.cookie("next_path")){
                                 location.href = $.cookie("next_path")
                             }
                             else{
                                 location.href = "/index/"
                             }
                         }
                         else {
                             $(".error").html(data["error_msg"]);
                             setTimeout(foo, 3000)
                         }
                     }
                 });
             });

         });
             // 将验证码加到id为captcha的元素里
             captchaObj.appendTo("#popup-captcha");
             // 更多接口参考:http://www.geetest.com/install/sections/idx-client-sdk.html
         };
    // 验证开始需要向网站主后台获取id,challenge,success(是否启用failback)
    $.ajax({
        url: "/pc-geetest/register?t=" + (new Date()).getTime(), // 加随机数防止缓存
        type: "get",
        dataType: "json",
        success: function (data) {
            // 使用initGeetest接口
            // 参数1:配置参数
            // 参数2:回调,回调的第一个参数验证码对象,之后可以使用它做appendTo之类的事件
            initGeetest({
                gt: data.gt,
                challenge: data.challenge,
                product: "popup", // 产品形式,包括:float,embed,popup。注意只对PC版验证码有效
                offline: !data.success // 表示用户后台检测极验服务器是否宕机,一般不需要关注
                // 更多配置参数请参见:http://www.geetest.com/install/sections/idx-client-sdk.html#config
            }, handlerPopup);
        }
    });
</script>

login.html

爬虫

破解极验滑动验证码

一些网站会在正常运行的正常的账号密码认证之外加上一些验证
码,以此来明确地区分人行为,从一定程度上达到反爬的效果,对于简单的验证码tesserocr就可以搞定如下


图片.png

但一些网站加入了滑动验证码,


图片.png
对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会特别的麻烦我们可以用selenium驱动浏览器来解决这个问题,大致分为
#1、输入账号、密码,然后点击登陆
#2、点击按钮,弹出没有缺口的图
#3、针对没有缺口的图片进行截图
#4、点击滑动按钮,弹出有缺口的图
#5、针对有缺口的图片进行截图
#6、对比两张图片,找出缺口,即滑动的位移
#7、按照人的行为行为习惯,把总位移切成一段段小的位移
#8、按照位移移动
#9、完成登录

实现

安装:selenium+chrome/phantomjs

#安装:Pillow
Pillow:基于PIL,处理python 3.x的图形图像库.因为PIL只能处理到python 2.x,而这个模块能处理Python3.x,目前用它做图形的很多.
http://www.cnblogs.com/apexchu/p/4231041.html

C:\Users\Administrator>pip3 install pillow
C:\Users\Administrator>python3
Python 3.6.1 (v3.6.1:69c0db5, Mar 21 2017, 18:41:36) [MSC v.1900 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> from PIL import Image
>>>

view.code

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
from PIL import Image
import time

def get_snap():
    '''
    对整个网页截图,保存成图片,然后用PIL.Image拿到图片对象
    :return: 图片对象
    '''
    driver.save_screenshot('snap.png')
    page_snap_obj=Image.open('snap.png')
    return page_snap_obj

def get_image():
    '''
    从网页的网站截图中,截取验证码图片
    :return: 验证码图片
    '''
    img=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_canvas_img')))
    time.sleep(2) #保证图片刷新出来
    localtion=img.location
    size=img.size

    top=localtion['y']
    bottom=localtion['y']+size['height']
    left=localtion['x']
    right=localtion['x']+size['width']

    page_snap_obj=get_snap()
    crop_imag_obj=page_snap_obj.crop((left,top,right,bottom))
    return crop_imag_obj


def get_distance(image1,image2):
    '''
    拿到滑动验证码需要移动的距离
    :param image1:没有缺口的图片对象
    :param image2:带缺口的图片对象
    :return:需要移动的距离
    '''
    threshold=60
    left=57
    for i in range(left,image1.size[0]):
        for j in range(image1.size[1]):
            rgb1=image1.load()[i,j]
            rgb2=image2.load()[i,j]
            res1=abs(rgb1[0]-rgb2[0])
            res2=abs(rgb1[1]-rgb2[1])
            res3=abs(rgb1[2]-rgb2[2])
            if not (res1 < threshold and res2 < threshold and res3 < threshold):
                return i-7 #经过测试,误差为大概为7
    return i-7 #经过测试,误差为大概为7


def get_tracks(distance):
    '''
    拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速
    匀变速运动基本公式:
    ①v=v0+at
    ②s=v0t+½at²
    ③v²-v0²=2as

    :param distance: 需要移动的距离
    :return: 存放每0.3秒移动的距离
    '''
    #初速度
    v=0
    #单位时间为0.2s来统计轨迹,轨迹即0.2内的位移
    t=0.3
    #位移/轨迹列表,列表内的一个元素代表0.2s的位移
    tracks=[]
    #当前的位移
    current=0
    #到达mid值开始减速
    mid=distance*4/5

    while current < distance:
        if current < mid:
            # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细
            a= 2
        else:
            a=-3

        #初速度
        v0=v
        #0.2秒时间内的位移
        s=v0*t+0.5*a*(t**2)
        #当前的位置
        current+=s
        #添加到轨迹列表
        tracks.append(round(s))

        #速度已经达到v,该速度作为下次的初速度
        v=v0+a*t
    return tracks


try:
    driver=webdriver.Chrome()
    driver.get('https://account.geetest.com/login')
    wait=WebDriverWait(driver,10)

    #步骤一:先点击按钮,弹出没有缺口的图片
    button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_radar_tip')))
    button.click()

    #步骤二:拿到没有缺口的图片
    image1=get_image()

    #步骤三:点击拖动按钮,弹出有缺口的图片
    button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
    button.click()

    #步骤四:拿到有缺口的图片
    image2=get_image()

    # print(image1,image1.size)
    # print(image2,image2.size)

    #步骤五:对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离
    distance=get_distance(image1,image2)

    #步骤六:模拟人的行为习惯(先匀加速拖动后匀减速拖动),把需要拖动的总距离分成一段一段小的轨迹
    tracks=get_tracks(distance)
    print(tracks)
    print(image1.size)
    print(distance,sum(tracks))


    #步骤七:按照轨迹拖动,完全验证
    button=wait.until(EC.presence_of_element_located((By.CLASS_NAME,'geetest_slider_button')))
    ActionChains(driver).click_and_hold(button).perform()
    for track in tracks:
        ActionChains(driver).move_by_offset(xoffset=track,yoffset=0).perform()
    else:
        ActionChains(driver).move_by_offset(xoffset=3,yoffset=0).perform() #先移过一点
        ActionChains(driver).move_by_offset(xoffset=-3,yoffset=0).perform() #再退回来,是不是更像人了

    time.sleep(0.5) #0.5秒后释放鼠标
    ActionChains(driver).release().perform()


    #步骤八:完成登录
    input_email=driver.find_element_by_id('email')
    input_password=driver.find_element_by_id('password')
    button=wait.until(EC.element_to_be_clickable((By.CLASS_NAME,'login-btn')))

    input_email.send_keys('18611453110@163.com')
    input_password.send_keys('linhaifeng123')
    # button.send_keys(Keys.ENTER)
    button.click()

    import time
    time.sleep(200)
finally:
    driver.close()

案列:

破解博客园后台登录

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
from PIL import Image
import time

def get_snap():
    driver.save_screenshot('full_snap.png')
    page_snap_obj=Image.open('full_snap.png')
    return page_snap_obj

def get_image():
    img=driver.find_element_by_class_name('geetest_canvas_img')
    time.sleep(2)
    location=img.location
    size=img.size

    left=location['x']
    top=location['y']
    right=left+size['width']
    bottom=top+size['height']

    page_snap_obj=get_snap()
    image_obj=page_snap_obj.crop((left,top,right,bottom))
    # image_obj.show()
    return image_obj

def get_distance(image1,image2):
    start=57
    threhold=60

    for i in range(start,image1.size[0]):
        for j in range(image1.size[1]):
            rgb1=image1.load()[i,j]
            rgb2=image2.load()[i,j]
            res1=abs(rgb1[0]-rgb2[0])
            res2=abs(rgb1[1]-rgb2[1])
            res3=abs(rgb1[2]-rgb2[2])
            # print(res1,res2,res3)
            if not (res1 < threhold and res2 < threhold and res3 < threhold):
                return i-7
    return i-7

def get_tracks(distance):
    distance+=20 #先滑过一点,最后再反着滑动回来
    v=0
    t=0.2
    forward_tracks=[]

    current=0
    mid=distance*3/5
    while current < distance:
        if current < mid:
            a=2
        else:
            a=-3

        s=v*t+0.5*a*(t**2)
        v=v+a*t
        current+=s
        forward_tracks.append(round(s))

    #反着滑动到准确位置
    back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20

    return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}

try:
    # 1、输入账号密码回车
    driver = webdriver.Chrome()
    driver.implicitly_wait(3)
    driver.get('https://passport.cnblogs.com/user/signin')

    username = driver.find_element_by_id('input1')
    pwd = driver.find_element_by_id('input2')
    signin = driver.find_element_by_id('signin')

    username.send_keys('linhaifeng')
    pwd.send_keys('xxxxx')
    signin.click()

    # 2、点击按钮,得到没有缺口的图片
    button = driver.find_element_by_class_name('geetest_radar_tip')
    button.click()

    # 3、获取没有缺口的图片
    image1 = get_image()

    # 4、点击滑动按钮,得到有缺口的图片
    button = driver.find_element_by_class_name('geetest_slider_button')
    button.click()

    # 5、获取有缺口的图片
    image2 = get_image()

    # 6、对比两种图片的像素点,找出位移
    distance = get_distance(image1, image2)

    # 7、模拟人的行为习惯,根据总位移得到行为轨迹
    tracks = get_tracks(distance)
    print(tracks)

    # 8、按照行动轨迹先正向滑动,后反滑动
    button = driver.find_element_by_class_name('geetest_slider_button')
    ActionChains(driver).click_and_hold(button).perform()

    # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
    for track in tracks['forward_tracks']:
        ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()

    # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
    time.sleep(0.5)
    for back_track in tracks['back_tracks']:
        ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()

    # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
    ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()

    # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
    time.sleep(0.5)
    ActionChains(driver).release().perform()

    time.sleep(10)  # 睡时间长一点,确定登录成功
finally:
    driver.close()

修订版本

from selenium import webdriver
from selenium.webdriver import ActionChains
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support import expected_conditions as EC
from selenium.webdriver.support.wait import WebDriverWait
from PIL import Image
import time

def get_snap(driver):
    driver.save_screenshot('full_snap.png')
    page_snap_obj=Image.open('full_snap.png')
    return page_snap_obj

def get_image(driver):
    img=driver.find_element_by_class_name('geetest_canvas_img')
    time.sleep(2)
    location=img.location
    size=img.size

    left=location['x']
    top=location['y']
    right=left+size['width']
    bottom=top+size['height']

    page_snap_obj=get_snap(driver)
    image_obj=page_snap_obj.crop((left,top,right,bottom))
    # image_obj.show()
    return image_obj

def get_distance(image1,image2):
    start=57
    threhold=60

    for i in range(start,image1.size[0]):
        for j in range(image1.size[1]):
            rgb1=image1.load()[i,j]
            rgb2=image2.load()[i,j]
            res1=abs(rgb1[0]-rgb2[0])
            res2=abs(rgb1[1]-rgb2[1])
            res3=abs(rgb1[2]-rgb2[2])
            # print(res1,res2,res3)
            if not (res1 < threhold and res2 < threhold and res3 < threhold):
                return i-7
    return i-7

def get_tracks(distance):
    distance+=20 #先滑过一点,最后再反着滑动回来
    v=0
    t=0.2
    forward_tracks=[]

    current=0
    mid=distance*3/5
    while current < distance:
        if current < mid:
            a=2
        else:
            a=-3

        s=v*t+0.5*a*(t**2)
        v=v+a*t
        current+=s
        forward_tracks.append(round(s))

    #反着滑动到准确位置
    back_tracks=[-3,-3,-2,-2,-2,-2,-2,-1,-1,-1] #总共等于-20

    return {'forward_tracks':forward_tracks,'back_tracks':back_tracks}

def crack(driver): #破解滑动认证
    # 1、点击按钮,得到没有缺口的图片
    button = driver.find_element_by_class_name('geetest_radar_tip')
    button.click()

    # 2、获取没有缺口的图片
    image1 = get_image(driver)

    # 3、点击滑动按钮,得到有缺口的图片
    button = driver.find_element_by_class_name('geetest_slider_button')
    button.click()

    # 4、获取有缺口的图片
    image2 = get_image(driver)

    # 5、对比两种图片的像素点,找出位移
    distance = get_distance(image1, image2)

    # 6、模拟人的行为习惯,根据总位移得到行为轨迹
    tracks = get_tracks(distance)
    print(tracks)

    # 7、按照行动轨迹先正向滑动,后反滑动
    button = driver.find_element_by_class_name('geetest_slider_button')
    ActionChains(driver).click_and_hold(button).perform()

    # 正常人类总是自信满满地开始正向滑动,自信地表现是疯狂加速
    for track in tracks['forward_tracks']:
        ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()

    # 结果傻逼了,正常的人类停顿了一下,回过神来发现,卧槽,滑过了,然后开始反向滑动
    time.sleep(0.5)
    for back_track in tracks['back_tracks']:
        ActionChains(driver).move_by_offset(xoffset=back_track, yoffset=0).perform()

    # 小范围震荡一下,进一步迷惑极验后台,这一步可以极大地提高成功率
    ActionChains(driver).move_by_offset(xoffset=-3, yoffset=0).perform()
    ActionChains(driver).move_by_offset(xoffset=3, yoffset=0).perform()

    # 成功后,骚包人类总喜欢默默地欣赏一下自己拼图的成果,然后恋恋不舍地松开那只脏手
    time.sleep(0.5)
    ActionChains(driver).release().perform()

def login_cnblogs(username,password):
    driver = webdriver.Chrome()
    try:
        # 1、输入账号密码回车
        driver.implicitly_wait(3)
        driver.get('https://passport.cnblogs.com/user/signin')

        input_username = driver.find_element_by_id('input1')
        input_pwd = driver.find_element_by_id('input2')
        signin = driver.find_element_by_id('signin')

        input_username.send_keys(username)
        input_pwd.send_keys(password)
        signin.click()

        # 2、破解滑动认证
        crack(driver)

        time.sleep(10)  # 睡时间长一点,确定登录成功
    finally:
        driver.close()

if __name__ == '__main__':
    login_cnblogs(username='linhaifeng',password='xxxx')

相关文章

  • 网易滑动验证码破解

    1.滑动验证码 前面介绍了利用 tesserocr 来识别简单的图形验证码,和利用openCV识别滑动验证码的缺口...

  • python爬虫高级技术之验证码篇-滑动验证码识别技术!

    滑动验证码介绍 本篇博客涉及到的验证码为滑动验证码,不同于极验证,本验证码难度略低,需要的将滑块拖动到矩形区域右侧...

  • B站登陆(滑动验证码)

    B站登陆(滑动验证码)

  • 反滑块验证

    简介 滑动验证码: 滑动验证码也可以叫做行为验证,其中最出名的就是极验。 作者:Simon0903 链接:http...

  • python爬虫之模拟移动

    爬虫的一大难点就是破解验证码。验证码大致上分为文字识别、滑动、文字点击、图像识别等,本文讲的是其中的滑动验证码。滑...

  • python爬虫之滑动验证码[完整版]

    爬虫的一大难点就是破解验证码。验证码大致上分为文字识别、滑动、文字点击、图像识别等,本文讲的是其中的滑动验证码。滑...

  • python爬虫之图像对比

    爬虫的一大难点就是破解验证码。验证码大致上分为文字识别、滑动、文字点击、图像识别等,本文讲的是其中的滑动验证码。滑...

  • python爬虫之轨迹算法

    爬虫的一大难点就是破解验证码。验证码大致上分为文字识别、滑动、文字点击、图像识别等,本文讲的是其中的滑动验证码。滑...

  • Python爬虫教程:验证码识别

    常见反爬虫手段:验证码1.简单图片,扭曲数字验证码2.中文顺序点击3.动态验证码4.滑动验证:滑动小方块到缺口5....

  • Python实现自动登录,强行突破图形验证码!

    验证码有图形验证码、极验滑动验证码、点触验证码、宫格验证码。这回重点讲讲图形验证码的识别。 虽说图形验证码最简单,...

网友评论

  • 严北:geetest.py怎么获取呢?
    _Caesar:@严北 极验官网下载的一个包

本文标题:滑动验证码

本文链接:https://www.haomeiwen.com/subject/ciakkftx.html