美文网首页
数学之美

数学之美

作者: 李影_8de2 | 来源:发表于2018-09-21 20:10 被阅读0次

最近陪儿子上补习班,重温了好多数学的知识。也开始审视,一个数学的知识应该怎样教?怎样学?

以学而思的讲课为例,听解题思路时非常清晰,然后老师为了你方便记住,会把规律总结出来要你记住。可是下次再做题时发现竟然忘记了。以前有人说学而思不给你讲why,只要求你死记硬背下how。其实不是的。例题绝对会讲why,并且也非常清晰。只是学生不容易记住这个推理过程罢了。如果能学会这个推理过程,那么,才是真正的锻炼思维的过程。所以,死记规律在做选择题时相对有优势。而会推理过程很重要,可以起到举一反三的作用,这个才是真正掌握思维。这个需要自己把例题再推理一遍,甚至多遍。然后再看下习题,有哪些变种?基础解题思路一致,那么变的部分怎么处理?可能需要在基础的推理上找规律。例如,统筹与最优化,一个购物中心设在哪个点人们总花费距离最短的问题。根据推理,如果有奇数个点,就是设在最中间的点。这时候如果数很大,你就需要再进一步会求这个中心点。根据小数的判断,比如5个点的中心点是3,7个点的中心点是4,9个点的中心点是了5,找出规律是这个数/2+1。就是说,一,学过的知识点你要会推理,二,你要死记硬背下来这个知识点总结出来的规律,三,你还要自己根据基本的知识点规律,推理出变量的部分。

还有就是需要抓住一些基本要素。比如图形,那就一定离不开点,线和面。解题总是要这些要素入手,根据逻辑推理来找出答案。

数学其实挺有乐趣的,烧脑的过程很享受。

相关文章

  • 数学之美在google中文黑板报的原文

    数学之美 系列一 -- 统计语言模型 数学之美 系列二 -- 谈谈中文分词 数学之美 系列三 -- 隐含马尔可夫模...

  • UE4 等边三角形

    数学之美

  • 05信息论

    信息熵——参看《数学之美》 第6章 86 最大熵——参看《数学之美》 第20章202

  • 数学之美,AI之始(下)

    数学之美,AI(人工智能)之始(上) 数学之美,AI之始(中) 人工智能之隐忧有哪些? 隐私安全,数据歧视和...

  • 数学之美

    一、基础运算之美 1x8+1=912x8+2=98123x8+3=9871234x8+4=987612345x8+...

  • 《数学之美》①

    在研究生阶段的前一个月,读了两本书,一本是《大数据时代下的统计学》另一本是吴军的《数学之美》。首先感谢这个阶段的...

  • 数学之美

    数学之美 德国数学家高斯有句名言:数学是科学的皇后。 古希腊数学家普洛克拉斯说:哪里有数,哪里就有...

  • 数学之美

    最近接触到一些低年级的小朋友,关于教他们数学,其实对我来说是特别有挑战性的。因为之前我一直都是辅导初、高中、高考数...

  • 数学之美

    本书只是大略的把能看懂的看了一遍,前几节和最后几节是比较容易看懂的,中间的一些章节,介绍的算法比较看不懂,用到了很...

  • 《数学之美》

    吴军老师的《数学之美》系列博客是2006年在Google黑板报上开始连载的,当时我正在上李星老师的《计算机网络》课...

网友评论

      本文标题:数学之美

      本文链接:https://www.haomeiwen.com/subject/cucwgftx.html