美文网首页互联网内推
[leetcode unique_path] 常用算法之动态规划

[leetcode unique_path] 常用算法之动态规划

作者: 书呆子的复仇 | 来源:发表于2015-11-19 20:33 被阅读782次

    今天在刷leetcode的时候,遇到这样一道题目。

    大概就是说机器人从左上角走到右下角的终点,每次只能向右或者向下走一步,求所有可能的唯一路径共有多少条。最容易想到的应该就是用DFS或者BFS将所有可能的解进行枚举。

    typedef pair<int, int> Pos;
    
    void dfs(Pos p, Pos end, int *count) {
        if (p.first <= end.first && p.second <= end.second) {
            if (p == end) {
                (*count)++;
            } else {
                p.first++; //向右走
                dfs(p, end, count);
                p.first--; //栈返回后恢复原来的坐标
                p.second++; //向下走
                dfs(p, end, count);
            }
        }
    }
    
    int unique_path(int m, int n) {
        Pos begin(0, 0);
        Pos end(m - 1, n - 1);
        int count = 0;
        dfs(begin, end, &count);
        return count;
    }
    

    很遗憾,即使只是在23x12这样的地图上,也需要遍历将近两亿次。那有没有存在更优的解呢?答案是肯定的。
    我们来仔细分析下,当机器人走到终点时,它的前一步要么是在1这个位置,要么就是2这个位置。


    因此,我们得出一个重要的结论:
    机器人走到终点的所有路径 = 机器人走到1位置的所有路径 +机器人走到2位置的所有路径。
    同理如果要求走到1位置的所有路径,只要求它上面和左面的所有路径之和。

    再来看当被划红线的小方块作为终点时,都只有一条唯一的路径。

    很明显我们可以用动态规划来解决这个问题。经过上面的分析后,可以列出状态转义方程:

    dp[0][j] = 1
    dp[i][0] = 1
    dp[i][j] = dp[i - 1][j] + dp[i][j - 1]
    

    代码如下:

    class Solution {
    public:
        int uniquePaths(int m, int n) {
            int dp[m][n];
            for (int i = 0; i < m; i++) {
                dp[i][0] = 1;
            }
            for (int j = 0; j < n; j++) {
                dp[0][j] = 1;
            }
            for (int i = 1; i < m; i++) {
                for (int j = 1; j < n; j++) {
                    dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
                }
            }
            return dp[m-1][n-1];
        }
    };
    

    相比起上面的DFS算法,使用动态规划时间复杂度只需要O(m*n)。在求解最优化问题时,无非最常用的就是贪心和动态规划两种。在使用动态规划中,先对问题仔细分析,列出状态转移方程以及边界条件,接下来代码就是水到渠成的事情了。

    相关文章

      网友评论

        本文标题:[leetcode unique_path] 常用算法之动态规划

        本文链接:https://www.haomeiwen.com/subject/cuylhttx.html