章节号 | 内容 |
---|---|
1图片格式(png) | 宽度大于620px,保持高宽 |
第1章节 import模块
-
1-1 import模块—sys.path
↓import导入模块的搜索路径:
In [1]: import sys
In [2]: sys.path
Out[2]:
#第一个为当前路径
['',
'/usr/lib/python36.zip',
'/usr/lib/python3.6',
'/usr/lib/python3.6/lib-dynload',
'/home/li/.local/lib/python3.6/site-packages',
'/usr/local/lib/python3.6/dist-packages',
'/usr/lib/python3/dist-packages',
'/usr/lib/python3/dist-packages/IPython/extensions',
'/home/li/.ipython']
In [3]:
↓添加一条搜索路径:
In [4]: sys.path.append("/home")
In [5]: sys.path
Out[5]:
['',
'/usr/lib/python36.zip',
'/usr/lib/python3.6',
'/usr/lib/python3.6/lib-dynload',
'/home/li/.local/lib/python3.6/site-packages',
'/usr/local/lib/python3.6/dist-packages',
'/usr/lib/python3/dist-packages',
'/usr/lib/python3/dist-packages/IPython/extensions',
'/home/li/.ipython',
'/home']
In [6]:
↓sys.path
的一些用法:
-
1-2 import模块—重新导入模块
1、自定义模块并导入:
↓在某路径下,新建一个test.py文件,输入以下代码:
vim test.py
1 def test():
2 print("test import")
↓在sys.path中添加当前路径,便可导入使用:
In [1]: import sys
In [2]: sys.path
Out[2]:
['',
'/usr/lib/python2.7',
'/usr/lib/python2.7/plat-x86_64-linux-gnu',
'/usr/lib/python2.7/lib-tk',
'/usr/lib/python2.7/lib-old',
'/usr/lib/python2.7/lib-dynload',
'/usr/local/lib/python2.7/dist-packages',
'/usr/lib/python2.7/dist-packages',
'/usr/lib/python2.7/dist-packages/IPython/extensions',
'/home/li/.ipython']
In [3]: sys.path.append("/home/li")
In [4]: sys.path
Out[4]:
['',
'/usr/lib/python2.7',
'/usr/lib/python2.7/plat-x86_64-linux-gnu',
'/usr/lib/python2.7/lib-tk',
'/usr/lib/python2.7/lib-old',
'/usr/lib/python2.7/lib-dynload',
'/usr/local/lib/python2.7/dist-packages',
'/usr/lib/python2.7/dist-packages',
'/usr/lib/python2.7/dist-packages/IPython/extensions',
'/home/li/.ipython',
'/home/li']
In [5]: import test
In [6]: test.test()
test import
In [7]:
↑退出后path的添加会失效,再次使用需要再次导入。
2、重新导入模块reload(模块)
应用场景:在导入一个模块后,该模块代码被修改,如果不重新导入,则新修改的代码无法使用。再次使用import也不能完成预期,正确做法为
:
In [7]: reload(test)
Out[7]: <module 'test' from 'test.pyc'>
-
1-3 import模块—模块的循环导入问题
什么是循环导入?
我用你,我导入你。同时你也用我,你导入我。
from 模块名 import 函数名
root@li-ThinkPad-T420s:/home/li# cat test.py
from text import text
def test():
print("test import")
text()
test()
root@li-ThinkPad-T420s:/home/li# cat text.py
from test import test
def text():
print("text import")
test()
text()
root@li-ThinkPad-T420s:/home/li#
root@li-ThinkPad-T420s:/home/li# python test.py
Traceback (most recent call last):
File "test.py", line 1, in <module>
from text import text
File "/home/li/text.py", line 1, in <module>
from test import test
File "/home/li/test.py", line 1, in <module>
from text import text
ImportError: cannot import name text
root@li-ThinkPad-T420s:/home/li#
↑从设计角度来说,这种情况要严格避免。
第2章节 == 和 is
==
是判断值
是否相同
is
是判断id
是否相同(是否指向同一个东西)
In [20]: a=[1,2]
In [21]: b=[1,2]
In [22]: a is b
Out[22]: False
In [23]: id(a)
Out[23]: 140065919094080
In [24]: id(b)
Out[24]: 140065919170680
In [25]: a == b
Out[25]: True
↓注意这个问题,数字在负的X到正的X这一范围内,所有的id会变成相同的,超过这个范围则会不同。切记。
In [26]: a = 100
In [27]: b = 100
In [28]: a == b
Out[28]: True
In [29]: a is b
Out[29]: True
In [30]: a=10000
In [31]: b=10000
In [32]: id(a)
Out[32]: 94786674642736
In [33]: id(b)
Out[33]: 94786674642640
第3章节 深拷贝和浅拷贝
-
3-1 深拷贝和浅拷贝—深和浅的不同
1、深:我拿到了数据(copy.deepcopy
)。改一个,另一个不变。
In [35]: a=[1,2,3]
In [39]: import copy
In [40]: b=copy.deepcopy(a)
In [41]: id(a)
Out[41]: 140065900535752
In [42]: id(b)
Out[42]: 140065909328424
#深拷贝
2、浅:我只拿到了地址。改一个,另一个也跟着变。
In [35]: a=[1,2,3]
In [36]: b=a
In [37]: id(a)
Out[37]: 140065900535752
In [38]: id(b)
Out[38]: 140065900535752
#浅拷贝
-
3-2 深拷贝和浅拷贝—多重引用下的深拷贝
深拷贝对多重引用会自动进行递归拷贝,一直到最底层。
In [55]: a
Out[55]: [1, 2, 3, 4]
In [56]: b
Out[56]: [1, 2, 3]
In [57]: c=[a,b]
In [58]: c
Out[58]: [[1, 2, 3, 4], [1, 2, 3]]
In [59]: d=c
In [60]: id(c)
Out[60]: 140065909614568
In [61]: id(d)
Out[61]: 140065909614568
In [62]: e=copy.deepcopy(c)
In [63]: id(e)
Out[63]: 140065909636632
In [64]: id(e[0])
Out[64]: 140065919104784
In [65]: id(c[0])
Out[65]: 140065900535752
In [66]: id(d[0])
Out[66]: 140065900535752
In [67]: e
Out[67]: [[1, 2, 3, 4], [1, 2, 3]]
-
3-3 深拷贝和浅拷贝—copy和deepcopy
copy模块中,还有一个copy.copy函数。
In [70]: a=[1,2]
In [71]: b=[3,4]
In [72]: c=[a,b]
In [73]: c
Out[73]: [[1, 2], [3, 4]]
In [74]: d=copy.copy(c)
In [75]: d
Out[75]: [[1, 2], [3, 4]]
In [76]: id(c)
Out[76]: 140065919152424
In [77]: id(d)
Out[77]: 140065918710200
In [78]: id(c[0])
Out[78]: 140065919059368
In [79]: id(d[0])
Out[79]: 140065919059368
copy()只识别第一层引用。
deepcopy()识别所有引用,一直到最底。
-
3-4 深拷贝和浅拷贝—copy()元组时特点
In [81]: a
Out[81]: [1, 2]
In [82]: b
Out[82]: [3, 4]
In [83]: c=(a,b)
In [84]: d=copy.copy(c)
In [85]: id(c)
Out[85]: 140065900473808
In [86]: id(d)
Out[86]: 140065900473808
In [87]: id(c[0])
Out[87]: 140065919059368
In [88]: id(d[0])
Out[88]: 140065919059368
In [89]: id(c[0][0])
Out[89]: 94786668758568
In [90]: id(d[0][0])
Out[90]: 94786668758568
元组本身是不可变类型,copy()判断出是不可变类型,第一层引用都不深入拷贝。copy()判断出是可变类型,深入拷贝第一层。
copy模块的功能一定要慎用,想清楚再用!
网友评论