美文网首页大数据 爬虫Python AI SqlPython待用Python编程
连连看有点费脑力,于是我直接用Python写了个自动过关脚本,太

连连看有点费脑力,于是我直接用Python写了个自动过关脚本,太

作者: 傻逼平台瞎几把封号 | 来源:发表于2022-04-06 16:05 被阅读0次

    最近女朋友在玩连连看,玩了一个星期了还没通关,真的是菜。

    我实在是看不过去了,直接用python写了个脚本代码,一分钟一把游戏。

    快是快,就是联网玩容易被骂,嘿嘿~

    直接上代码

    模块导入

    import cv2
    import numpy as np
    import win32api
    import win32gui
    import win32con
    from PIL import ImageGrab
    import time
    import random
    

    窗体标题 用于定位游戏窗体

    WINDOW_TITLE = "连连看"
    
    

    时间间隔随机生成 [MIN,MAX]

    TIME_INTERVAL_MAX = 0.06
    TIME_INTERVAL_MIN = 0.1
    
    

    游戏区域距离顶点的x偏移

    MARGIN_LEFT = 10
    
    

    游戏区域距离顶点的y偏移

    MARGIN_HEIGHT = 180
    
    

    横向的方块数量

    H_NUM = 19
    
    

    纵向的方块数量

    V_NUM = 11
    
    

    方块宽度

    POINT_WIDTH = 31
    
    

    方块高度

    POINT_HEIGHT = 35
    
    

    空图像编号

    EMPTY_ID = 0
    
    

    切片处理时候的左上、右下坐标:

    SUB_LT_X = 8
    SUB_LT_Y = 8
    SUB_RB_X = 27
    SUB_RB_Y = 27
    
    

    游戏的最多消除次数

    MAX_ROUND = 200
    
    

    获取窗体坐标位置

    def getGameWindow():
        # FindWindow(lpClassName=None, lpWindowName=None)  窗口类名 窗口标题名
        window = win32gui.FindWindow(None, WINDOW_TITLE)
    
        # 没有定位到游戏窗体
        while not window:
            print('Failed to locate the game window , reposition the game window after 10 seconds...')
            time.sleep(10)
            window = win32gui.FindWindow(None, WINDOW_TITLE)
    
        # 定位到游戏窗体
        # 置顶游戏窗口
        win32gui.SetForegroundWindow(window)
        pos = win32gui.GetWindowRect(window)
        print("Game windows at " + str(pos))
        return (pos[0], pos[1])
    
    

    获取屏幕截图

    def getScreenImage():
        print('Shot screen...')
        # 获取屏幕截图 Image类型对象
        scim = ImageGrab.grab()
        scim.save('screen.png')
        # 用opencv读取屏幕截图
        # 获取ndarray
        return cv2.imread("screen.png")
    
    

    从截图中分辨图片 处理成地图

    def getAllSquare(screen_image, game_pos):
        print('Processing pictures...')
        # 通过游戏窗体定位
        # 加上偏移量获取游戏区域
        game_x = game_pos[0] + MARGIN_LEFT
        game_y = game_pos[1] + MARGIN_HEIGHT
    
        # 从游戏区域左上开始
        # 把图像按照具体大小切割成相同的小块
        # 切割标准是按照小块的横纵坐标
        all_square = []
        for x in range(0, H_NUM):
            for y in range(0, V_NUM):
                # ndarray的切片方法 : [纵坐标起始位置:纵坐标结束为止,横坐标起始位置:横坐标结束位置]
                square = screen_image[game_y + y * POINT_HEIGHT:game_y + (y + 1) * POINT_HEIGHT,
                         game_x + x * POINT_WIDTH:game_x + (x + 1) * POINT_WIDTH]
                all_square.append(square)
    
        # 因为有些图片的边缘会造成干扰,所以统一把图片往内缩小一圈
        # 对所有的方块进行处理 ,去掉边缘一圈后返回
        finalresult = []
        for square in all_square:
            s = square[SUB_LT_Y:SUB_RB_Y, SUB_LT_X:SUB_RB_X]
            finalresult.append(s)
        return finalresult
    
    

    判断列表中是否存在相同图形
    存在返回进行判断图片所在的id
    否则返回-1

    def isImageExist(img, img_list):
        i = 0
        for existed_img in img_list:
            # 两个图片进行比较 返回的是两个图片的标准差
            b = np.subtract(existed_img, img)
            # 若标准差全为0 即两张图片没有区别
            if not np.any(b):
                return i
            i = i + 1
        return -1
    
    

    获取所有的方块类型

    def getAllSquareTypes(all_square):
        print("Init pictures types...")
        types = []
        # number列表用来记录每个id的出现次数
        number = []
        # 当前出现次数最多的方块
        # 这里我们默认出现最多的方块应该是空白块
        nowid = 0;
        for square in all_square:
            nid = isImageExist(square, types)
            # 如果这个图像不存在则插入列表
            if nid == -1:
                types.append(square)
                number.append(1);
            else:
                # 若这个图像存在则给计数器 + 1
                number[nid] = number[nid] + 1
                if (number[nid] > number[nowid]):
                    nowid = nid
        # 更新EMPTY_ID
        # 即判断在当前这张图中的空白块id
        global EMPTY_ID
        EMPTY_ID = nowid
        print('EMPTY_ID = ' + str(EMPTY_ID))
        return types
    
    

    将二维图片矩阵转换为二维数字矩阵
    注意因为在上面对截屏切片时是以列为优先切片的
    所以生成的record二维矩阵每行存放的其实是游戏屏幕中每列的编号
    换个说法就是record其实是游戏屏幕中心对称后的列表

    def getAllSquareRecord(all_square_list, types):
        print("Change map...")
        record = []
        line = []
        for square in all_square_list:
            num = 0
            for type in types:
                res = cv2.subtract(square, type)
                if not np.any(res):
                    line.append(num)
                    break
                num += 1
            # 每列的数量为V_NUM
            # 那么当当前的line列表中存在V_NUM个方块时我们认为本列处理完毕
            if len(line) == V_NUM:
                print(line);
                record.append(line)
                line = []
        return record
    
    

    判断给出的两个图像能否消除

    def canConnect(x1, y1, x2, y2, r):
        result = r[:]
    
        # 如果两个图像中有一个为0 直接返回False
        if result[x1][y1] == EMPTY_ID or result[x2][y2] == EMPTY_ID:
            return False
        if x1 == x2 and y1 == y2:
            return False
        if result[x1][y1] != result[x2][y2]:
            return False
        # 判断横向连通
        if horizontalCheck(x1, y1, x2, y2, result):
            return True
        # 判断纵向连通
        if verticalCheck(x1, y1, x2, y2, result):
            return True
        # 判断一个拐点可连通
        if turnOnceCheck(x1, y1, x2, y2, result):
            return True
        # 判断两个拐点可连通
        if turnTwiceCheck(x1, y1, x2, y2, result):
            return True
        # 不可联通返回False
        return False
    
    

    判断横向联通

    def horizontalCheck(x1, y1, x2, y2, result):
        if x1 == x2 and y1 == y2:
            return False
        if x1 != x2:
            return False
        startY = min(y1, y2)
        endY = max(y1, y2)
        # 判断两个方块是否相邻
        if (endY - startY) == 1:
            return True
        # 判断两个方块通路上是否都是0,有一个不是,就说明不能联通,返回false
        for i in range(startY + 1, endY):
            if result[x1][i] != EMPTY_ID:
                return False
        return True
    
    

    判断纵向联通

    def verticalCheck(x1, y1, x2, y2, result):
        if x1 == x2 and y1 == y2:
            return False
    
        if y1 != y2:
            return False
        startX = min(x1, x2)
        endX = max(x1, x2)
        # 判断两个方块是否相邻
        if (endX - startX) == 1:
            return True
        # 判断两方块儿通路上是否可连。
        for i in range(startX + 1, endX):
            if result[i][y1] != EMPTY_ID:
                return False
        return True
    
    

    判断一个拐点可联通

    def turnOnceCheck(x1, y1, x2, y2, result):
        if x1 == x2 or y1 == y2:
            return False
    
        cx = x1
        cy = y2
        dx = x2
        dy = y1
        # 拐点为空,从第一个点到拐点并且从拐点到第二个点可通,则整条路可通。
        if result[cx][cy] == EMPTY_ID:
            if horizontalCheck(x1, y1, cx, cy, result) and verticalCheck(cx, cy, x2, y2, result):
                return True
        if result[dx][dy] == EMPTY_ID:
            if verticalCheck(x1, y1, dx, dy, result) and horizontalCheck(dx, dy, x2, y2, result):
                return True
        return False
    
    

    判断两个拐点可联通

    def turnTwiceCheck(x1, y1, x2, y2, result):
        if x1 == x2 and y1 == y2:
            return False
    
        # 遍历整个数组找合适的拐点
        for i in range(0, len(result)):
            for j in range(0, len(result[1])):
                # 不为空不能作为拐点
                if result[i][j] != EMPTY_ID:
                    continue
                # 不和被选方块在同一行列的不能作为拐点
                if i != x1 and i != x2 and j != y1 and j != y2:
                    continue
                # 作为交点的方块不能作为拐点
                if (i == x1 and j == y2) or (i == x2 and j == y1):
                    continue
                if turnOnceCheck(x1, y1, i, j, result) and (
                        horizontalCheck(i, j, x2, y2, result) or verticalCheck(i, j, x2, y2, result)):
                    return True
                if turnOnceCheck(i, j, x2, y2, result) and (
                        horizontalCheck(x1, y1, i, j, result) or verticalCheck(x1, y1, i, j, result)):
                    return True
        return False
    
    

    自动消除

    def autoRelease(result, game_x, game_y):
        # 遍历地图
        for i in range(0, len(result)):
            for j in range(0, len(result[0])):
                # 当前位置非空
                if result[i][j] != EMPTY_ID:
                    # 再次遍历地图 寻找另一个满足条件的图片
                    for m in range(0, len(result)):
                        for n in range(0, len(result[0])):
                            if result[m][n] != EMPTY_ID:
                                # 若可以执行消除
                                if canConnect(i, j, m, n, result):
                                    # 消除的两个位置设置为空
                                    result[i][j] = EMPTY_ID
                                    result[m][n] = EMPTY_ID
                                    print('Remove :' + str(i + 1) + ',' + str(j + 1) + ' and ' + str(m + 1) + ',' + str(
                                        n + 1))
    
                                    # 计算当前两个位置的图片在游戏中应该存在的位置
                                    x1 = game_x + j * POINT_WIDTH
                                    y1 = game_y + i * POINT_HEIGHT
                                    x2 = game_x + n * POINT_WIDTH
                                    y2 = game_y + m * POINT_HEIGHT
    
                                    # 模拟鼠标点击第一个图片所在的位置
                                    win32api.SetCursorPos((x1 + 15, y1 + 18))
                                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x1 + 15, y1 + 18, 0, 0)
                                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x1 + 15, y1 + 18, 0, 0)
    
                                    # 等待随机时间 ,防止检测
                                    time.sleep(random.uniform(TIME_INTERVAL_MIN, TIME_INTERVAL_MAX))
    
                                    # 模拟鼠标点击第二个图片所在的位置
                                    win32api.SetCursorPos((x2 + 15, y2 + 18))
                                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x2 + 15, y2 + 18, 0, 0)
                                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x2 + 15, y2 + 18, 0, 0)
                                    time.sleep(random.uniform(TIME_INTERVAL_MIN, TIME_INTERVAL_MAX))
                                    # 执行消除后返回True
                                    return True
        return False
    

    效果的话得上传视频,截图展现不出来效果,大家可以自行试试。素材可以私我

    全部代码

    # -*- coding:utf-8 -*-
    import cv2
    import numpy as np
    import win32api
    import win32gui
    import win32con
    from PIL import ImageGrab
    import time
    import random
    
    # 窗体标题  用于定位游戏窗体
    WINDOW_TITLE = "连连看"
    # 时间间隔随机生成 [MIN,MAX]
    TIME_INTERVAL_MAX = 0.06
    TIME_INTERVAL_MIN = 0.1
    # 游戏区域距离顶点的x偏移
    MARGIN_LEFT = 10
    # 游戏区域距离顶点的y偏移
    MARGIN_HEIGHT = 180
    # 横向的方块数量
    H_NUM = 19
    # 纵向的方块数量
    V_NUM = 11
    # 方块宽度
    POINT_WIDTH = 31
    # 方块高度
    POINT_HEIGHT = 35
    # 空图像编号
    EMPTY_ID = 0
    # 切片处理时候的左上、右下坐标:
    SUB_LT_X = 8
    SUB_LT_Y = 8
    SUB_RB_X = 27
    SUB_RB_Y = 27
    # 游戏的最多消除次数
    MAX_ROUND = 200
    
    def getGameWindow():
        # FindWindow(lpClassName=None, lpWindowName=None)  窗口类名 窗口标题名
        window = win32gui.FindWindow(None, WINDOW_TITLE)
    
        # 没有定位到游戏窗体
        while not window:
            print('Failed to locate the game window , reposition the game window after 10 seconds...')
            time.sleep(10)
            window = win32gui.FindWindow(None, WINDOW_TITLE)
    
        # 定位到游戏窗体
        # 置顶游戏窗口
        win32gui.SetForegroundWindow(window)
        pos = win32gui.GetWindowRect(window)
        print("Game windows at " + str(pos))
        return (pos[0], pos[1])
    
    def getScreenImage():
        print('Shot screen...')
        # 获取屏幕截图 Image类型对象
        scim = ImageGrab.grab()
        scim.save('screen.png')
        # 用opencv读取屏幕截图
        # 获取ndarray
        return cv2.imread("screen.png")
    
    def getAllSquare(screen_image, game_pos):
        print('Processing pictures...')
        # 通过游戏窗体定位
        # 加上偏移量获取游戏区域
        game_x = game_pos[0] + MARGIN_LEFT
        game_y = game_pos[1] + MARGIN_HEIGHT
    
        # 从游戏区域左上开始
        # 把图像按照具体大小切割成相同的小块
        # 切割标准是按照小块的横纵坐标
        all_square = []
        for x in range(0, H_NUM):
            for y in range(0, V_NUM):
                # ndarray的切片方法 : [纵坐标起始位置:纵坐标结束为止,横坐标起始位置:横坐标结束位置]
                square = screen_image[game_y + y * POINT_HEIGHT:game_y + (y + 1) * POINT_HEIGHT,
                         game_x + x * POINT_WIDTH:game_x + (x + 1) * POINT_WIDTH]
                all_square.append(square)
    
        # 因为有些图片的边缘会造成干扰,所以统一把图片往内缩小一圈
        # 对所有的方块进行处理 ,去掉边缘一圈后返回
        finalresult = []
        for square in all_square:
            s = square[SUB_LT_Y:SUB_RB_Y, SUB_LT_X:SUB_RB_X]
            finalresult.append(s)
        return finalresult
    
    # 判断列表中是否存在相同图形
    # 存在返回进行判断图片所在的id
    # 否则返回-1
    def isImageExist(img, img_list):
        i = 0
        for existed_img in img_list:
            # 两个图片进行比较 返回的是两个图片的标准差
            b = np.subtract(existed_img, img)
            # 若标准差全为0 即两张图片没有区别
            if not np.any(b):
                return i
            i = i + 1
        return -1
    
    def getAllSquareTypes(all_square):
        print("Init pictures types...")
        types = []
        # number列表用来记录每个id的出现次数
        number = []
        # 当前出现次数最多的方块
        # 这里我们默认出现最多的方块应该是空白块
        nowid = 0;
        for square in all_square:
            nid = isImageExist(square, types)
            # 如果这个图像不存在则插入列表
            if nid == -1:
                types.append(square)
                number.append(1);
            else:
                # 若这个图像存在则给计数器 + 1
                number[nid] = number[nid] + 1
                if (number[nid] > number[nowid]):
                    nowid = nid
        # 更新EMPTY_ID
        # 即判断在当前这张图中的空白块id
        global EMPTY_ID
        EMPTY_ID = nowid
        print('EMPTY_ID = ' + str(EMPTY_ID))
        return types
    
    # 将二维图片矩阵转换为二维数字矩阵
    # 注意因为在上面对截屏切片时是以列为优先切片的
    # 所以生成的record二维矩阵每行存放的其实是游戏屏幕中每列的编号
    # 换个说法就是record其实是游戏屏幕中心对称后的列表
    def getAllSquareRecord(all_square_list, types):
        print("Change map...")
        record = []
        line = []
        for square in all_square_list:
            num = 0
            for type in types:
                res = cv2.subtract(square, type)
                if not np.any(res):
                    line.append(num)
                    break
                num += 1
            # 每列的数量为V_NUM
            # 那么当当前的line列表中存在V_NUM个方块时我们认为本列处理完毕
            if len(line) == V_NUM:
                print(line);
                record.append(line)
                line = []
        return record
    
    def canConnect(x1, y1, x2, y2, r):
        result = r[:]
    
        # 如果两个图像中有一个为0 直接返回False
        if result[x1][y1] == EMPTY_ID or result[x2][y2] == EMPTY_ID:
            return False
        if x1 == x2 and y1 == y2:
            return False
        if result[x1][y1] != result[x2][y2]:
            return False
        # 判断横向连通
        if horizontalCheck(x1, y1, x2, y2, result):
            return True
        # 判断纵向连通
        if verticalCheck(x1, y1, x2, y2, result):
            return True
        # 判断一个拐点可连通
        if turnOnceCheck(x1, y1, x2, y2, result):
            return True
        # 判断两个拐点可连通
        if turnTwiceCheck(x1, y1, x2, y2, result):
            return True
        # 不可联通返回False
        return False
    
    def horizontalCheck(x1, y1, x2, y2, result):
        if x1 == x2 and y1 == y2:
            return False
        if x1 != x2:
            return False
        startY = min(y1, y2)
        endY = max(y1, y2)
        # 判断两个方块是否相邻
        if (endY - startY) == 1:
            return True
        # 判断两个方块通路上是否都是0,有一个不是,就说明不能联通,返回false
        for i in range(startY + 1, endY):
            if result[x1][i] != EMPTY_ID:
                return False
        return True
    
    def verticalCheck(x1, y1, x2, y2, result):
        if x1 == x2 and y1 == y2:
            return False
    
        if y1 != y2:
            return False
        startX = min(x1, x2)
        endX = max(x1, x2)
        # 判断两个方块是否相邻
        if (endX - startX) == 1:
            return True
        # 判断两方块儿通路上是否可连。
        for i in range(startX + 1, endX):
            if result[i][y1] != EMPTY_ID:
                return False
        return True
    
    def turnOnceCheck(x1, y1, x2, y2, result):
        if x1 == x2 or y1 == y2:
            return False
    
        cx = x1
        cy = y2
        dx = x2
        dy = y1
        # 拐点为空,从第一个点到拐点并且从拐点到第二个点可通,则整条路可通。
        if result[cx][cy] == EMPTY_ID:
            if horizontalCheck(x1, y1, cx, cy, result) and verticalCheck(cx, cy, x2, y2, result):
                return True
        if result[dx][dy] == EMPTY_ID:
            if verticalCheck(x1, y1, dx, dy, result) and horizontalCheck(dx, dy, x2, y2, result):
                return True
        return False
    
    def turnTwiceCheck(x1, y1, x2, y2, result):
        if x1 == x2 and y1 == y2:
            return False
    
        # 遍历整个数组找合适的拐点
        for i in range(0, len(result)):
            for j in range(0, len(result[1])):
                # 不为空不能作为拐点
                if result[i][j] != EMPTY_ID:
                    continue
                # 不和被选方块在同一行列的不能作为拐点
                if i != x1 and i != x2 and j != y1 and j != y2:
                    continue
                # 作为交点的方块不能作为拐点
                if (i == x1 and j == y2) or (i == x2 and j == y1):
                    continue
                if turnOnceCheck(x1, y1, i, j, result) and (
                        horizontalCheck(i, j, x2, y2, result) or verticalCheck(i, j, x2, y2, result)):
                    return True
                if turnOnceCheck(i, j, x2, y2, result) and (
                        horizontalCheck(x1, y1, i, j, result) or verticalCheck(x1, y1, i, j, result)):
                    return True
        return False
    
    def autoRelease(result, game_x, game_y):
        # 遍历地图
        for i in range(0, len(result)):
            for j in range(0, len(result[0])):
                # 当前位置非空
                if result[i][j] != EMPTY_ID:
                    # 再次遍历地图 寻找另一个满足条件的图片
                    for m in range(0, len(result)):
                        for n in range(0, len(result[0])):
                            if result[m][n] != EMPTY_ID:
                                # 若可以执行消除
                                if canConnect(i, j, m, n, result):
                                    # 消除的两个位置设置为空
                                    result[i][j] = EMPTY_ID
                                    result[m][n] = EMPTY_ID
                                    print('Remove :' + str(i + 1) + ',' + str(j + 1) + ' and ' + str(m + 1) + ',' + str(
                                        n + 1))
    
                                    # 计算当前两个位置的图片在游戏中应该存在的位置
                                    x1 = game_x + j * POINT_WIDTH
                                    y1 = game_y + i * POINT_HEIGHT
                                    x2 = game_x + n * POINT_WIDTH
                                    y2 = game_y + m * POINT_HEIGHT
    
                                    # 模拟鼠标点击第一个图片所在的位置
                                    win32api.SetCursorPos((x1 + 15, y1 + 18))
                                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x1 + 15, y1 + 18, 0, 0)
                                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x1 + 15, y1 + 18, 0, 0)
    
                                    # 等待随机时间 ,防止检测
                                    time.sleep(random.uniform(TIME_INTERVAL_MIN, TIME_INTERVAL_MAX))
    
                                    # 模拟鼠标点击第二个图片所在的位置
                                    win32api.SetCursorPos((x2 + 15, y2 + 18))
                                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTDOWN, x2 + 15, y2 + 18, 0, 0)
                                    win32api.mouse_event(win32con.MOUSEEVENTF_LEFTUP, x2 + 15, y2 + 18, 0, 0)
                                    time.sleep(random.uniform(TIME_INTERVAL_MIN, TIME_INTERVAL_MAX))
                                    # 执行消除后返回True
                                    return True
        return False
    
    def autoRemove(squares, game_pos):
        game_x = game_pos[0] + MARGIN_LEFT
        game_y = game_pos[1] + MARGIN_HEIGHT
        # 重复一次消除直到到达最多消除次数
        while True:
            if not autoRelease(squares, game_x, game_y):
                # 当不再有可消除的方块时结束 , 返回消除数量
                return
    
    if __name__ == '__main__':
        random.seed()
        # i. 定位游戏窗体
        game_pos = getGameWindow()
        time.sleep(1)
        # ii. 获取屏幕截图
        screen_image = getScreenImage()
        # iii. 对截图切片,形成一张二维地图
        all_square_list = getAllSquare(screen_image, game_pos)
        # iv. 获取所有类型的图形,并编号
        types = getAllSquareTypes(all_square_list)
        # v. 讲获取的图片地图转换成数字矩阵
        result = np.transpose(getAllSquareRecord(all_square_list, types))
        # vi. 执行消除 , 并输出消除数量
        print('The total elimination amount is ' + str(autoRemove(result, game_pos)))
    
    

    兄弟们快去试试吧

    相关文章

      网友评论

        本文标题:连连看有点费脑力,于是我直接用Python写了个自动过关脚本,太

        本文链接:https://www.haomeiwen.com/subject/cwnrsrtx.html