目录:
- 导读
- Location点的旋转
- 坐标系的修正与在玩家背部建立坐标系
- 制作简易翅膀
导读
导读
本教程需要读者有一定的空间想象能力(因为我也懒得画图了233)
本教程使用的 PaperSpigot1.12.2-R0.1-SNAPSHOT 核心
在阅读之前请确保你具有高中数学必修4和和Java基础的知识
<To初中生>: 如果你是初中的话,别慌,你有趋向的概念就可以读懂本教程(应该吧...)
<To高中生>: 如果你还未学到关于上面的那本书,别慌学到了再来看也行233 (雾
<To大学生>: 没什么好说的...
Location点的旋转
首先我们引入平面上点围绕另一个点进行旋转的公式 (数学上)
平面中,一个点(x,y)绕任意点(x0,y0)逆时针旋转a度后的坐标
dx = (x - x0)*cos(a) - (y - y0)*sin(a) + x0 ;
dy = (x - x0)*sin(a) + (y - y0)*cos(a) + y0 ;
那么我们写入代码看看是怎么样的
/**
* 在二维平面上利用给定的中心点逆时针旋转一个点
*
* @param location 待旋转的点
* @param angle 旋转角度
* @param point 中心点
* @return {@link Location}
*/
public static Location rotateLocationAboutPoint(Location location, double angle, Location point) {
double radians = Math.toRadians(angle);
double dx = location.getX() - point.getX();
double dz = location.getZ() - point.getZ();
double newX = dx * Math.cos(radians) - dz * Math.sin(radians) + point.getX();
double newZ = dz * Math.cos(radians) + dx * Math.sin(radians) + point.getZ();
return new Location(location.getWorld(), newX, location.getY(), newZ);
}
总所周知,在mc坐标内,玩家走动的二维平面,其实是影响x轴和z轴的内容,所以我们上方的代码就套用x,y
坐标系的修正与在玩家背部建立坐标系
在我们之前的教程中,我们都会发现,我们在做一些让特效出现在玩家面前时,会出现特效出现在另外一边,这其实就是我们没有经过玩家朝向的修正,而发生的情况,比如下面这一张图
那么我们可以重新建立一个修正过后的坐标系,用的方法就是利用Location点的旋转
import org.bukkit.Location;
/**
* 自动修正在平面上的粒子朝向
*
* @author Zoyn
*/
public class PlayerFixedCoordinate {
private Location zeroDot;
private double rotateAngle;
public PlayerFixedCoordinate(Location playerLocation) {
// 旋转的角度
rotateAngle = playerLocation.getYaw();
zeroDot = playerLocation.clone();
zeroDot.setPitch(0);
// 重设仰俯角, 防止出现仰头后旋转角度不正确的问题
}
public Location getZeroDot() {
return zeroDot;
}
public Location newLocation(double x, double z) {
return rotateLocationAboutPoint(zeroDot.clone().add(-x, 0, z), rotateAngle, zeroDot);
}
/**
* 在二维平面上利用给定的中心点逆时针旋转一个点
*
* @param location 待旋转的点
* @param angle 旋转角度
* @param point 中心点
* @return {@link Location}
*/
public static Location rotateLocationAboutPoint(Location location, double angle, Location point) {
double radians = Math.toRadians(angle);
double dx = location.getX() - point.getX();
double dz = location.getZ() - point.getZ();
double newX = dx * Math.cos(radians) - dz * Math.sin(radians) + point.getX();
double newZ = dz * Math.cos(radians) + dx * Math.sin(radians) + point.getZ();
return new Location(location.getWorld(), newX, location.getY(), newZ);
}
}
首先我们来分析这个类是怎么写的,首先我们要旋转一个点,就需要旋转的角度,那么这时候 location 里的 yaw 就可以帮助我们完成这个工作,所以我在构造器里将 yaw 记录为 rotateAngle
之后我们看newLocation这个方法,需要填入两个参数分别是 x, y (为了方便理解,我其实直接将其设计为数学上的平面直角坐标系(右手坐标系))
而我们在看
zeroDot.clone().add(-x, 0, z)
这行代码, 首先它是 rotateLocationAboutPoint 方法里的待旋转的点,那么我们为什么要add呢?
因为啊, zeroDot 就是我们坐标系的原点,经过add之后就可以得到新的x,y了,
比如说,zeroDot是(0, 0),方法填入3, 2, 那么add完之后就得到 (3, 2) 这个点
那么为什么是-x呢???
因为啊,在Mc中的坐标系是遵循左手坐标系来设计的,所以它的x轴我们要乘以一个-1才能按照我们平常理解的右手坐标系来绘图
之后我们套用上这个修复过的坐标系来看看效果
jdfw3.gif
完整代码:
Player player = ........
PlayerFixedCoordinate coordinate = new PlayerFixedCoordinate(player.getLocation());
double radius = 10;
for (double t = -1; t <= 1; t += 0.001) {
double x = radius * Math.sin(t) * Math.cos(t) * Math.log(Math.abs(t));
double y = radius * Math.sqrt(Math.abs(t)) * Math.cos(t);
Location loc = coordinate.newLocation(x, y);
loc.getWorld().spawnParticle(Particle.FIREWORKS_SPARK, loc, 1, 0, 0, 0, 0);
}
下面分享一个PlayerBackCoordinate为了让读者能够举一反三,希望读者能够自行添加 z 轴的变化(思考:z轴的变化在右手坐标系中是如何变化,又应该如何将其转换至MC坐标系内)
绘图思考可以参照这张图:
PlayerBackCoordinate的思考
import org.bukkit.Location;
/**
* 将玩家背后转换为一个平面直角坐标系
*
* @author Zoyn
*/
public class PlayerBackCoordinate {
private Location zeroDot;
private double rotateAngle;
public PlayerBackCoordinate(Location playerLocation) {
// 旋转的角度
rotateAngle = playerLocation.getYaw();
zeroDot = playerLocation.clone();
zeroDot.setPitch(0); // 重设仰俯角
zeroDot.add(zeroDot.getDirection().multiply(-0.3)); // 使原点与玩家有一点点距离
}
public Location getZeroDot() {
return zeroDot;
}
public Location newLocation(double x, double y) {
return rotateLocationAboutPoint(zeroDot.clone().add(-x, y, 0), rotateAngle, zeroDot);
}
/**
* 在二维平面上利用给定的中心点逆时针旋转一个点
*
* @param location 待旋转的点
* @param angle 旋转角度
* @param point 中心点
* @return {@link Location}
*/
public static Location rotateLocationAboutPoint(Location location, double angle, Location point) {
double radians = Math.toRadians(angle);
double dx = location.getX() - point.getX();
double dz = location.getZ() - point.getZ();
double newX = dx * Math.cos(radians) - dz * Math.sin(radians) + point.getX();
double newZ = dz * Math.cos(radians) + dx * Math.sin(radians) + point.getZ();
return new Location(location.getWorld(), newX, location.getY(), newZ);
}
}
上方代码的使用:实例1:在玩家后背绘制一个圆
Player player = (Player) sender;
PlayerBackCoordinate coordinate = new PlayerBackCoordinate(player.getLocation().add(0, 1.6D, 0));
for (int angle = 0; angle < 360; angle++) {
double radians = Math.toRadians(angle);
double x = Math.cos(radians);
double y = Math.sin(radians);
Location loc = coordinate.newLocation(x, y);
loc.getWorld().spawnParticle(Particle.FLAME, loc, 1, 0, 0, 0, 0);
}
具体效果:
背后的火圈
制作简易翅膀
不说这么多,直接上代码好吧,用的就是上面的代码
Player player = (Player) sender;
PlayerBackCoordinate coordinate = new PlayerBackCoordinate(player.getLocation().add(0, 1.5D, 0));
for (double angle = 0; angle <= 135; angle++) {
double x = Math.toRadians(angle);
double y = Math.sin(2 * x);
Location loc = coordinate.newLocation(x, y);
loc.getWorld().spawnParticle(Particle.VILLAGER_HAPPY, loc, 1, 0, 0, 0, 0);
}
for (double angle = -135; angle <= 0; angle++) {
double x = Math.toRadians(angle);
double y = Math.cos((2 * x) + (Math.PI / 2));
Location loc = coordinate.newLocation(x, y);
loc.getWorld().spawnParticle(Particle.VILLAGER_HAPPY, loc, 1, 0, 0, 0, 0);
}
coordinate = new PlayerBackCoordinate(player.getLocation().add(0, 1, 0));
double radius = 0;
for (double angle = 0; angle <= 3 * 360; angle++) {
double radians = Math.toRadians(angle);
double x = radius * Math.cos(radians);
double y = radius * Math.sin(radians);
Location loc = coordinate.newLocation(x, y);
loc.getWorld().spawnParticle(Particle.FIREWORKS_SPARK, loc, 1, 0, 0, 0, 0);
radius += 0.001;
}
具体效果:
函数翅膀
结语
是的这个教程又开始更新了,就当做没事拿来玩玩的了,毕竟上了大学,还是可以拿线性代数来学以致用的嘛嘻嘻嘻。此外我想开一个ParticleLib的坑,专门来制作这类特效,希望各位看官可以多多支持
网友评论