源码解读java动态代理模式

作者: 程序员三千_ | 来源:发表于2020-02-29 14:16 被阅读0次

    读前须知:

    动态代理:只有你在运行的时候,才会产生代理类(代理对象),这个代理对象是动态生成的。我们在实现动态代理的时候,代理类并不像静态代理一样真正的创建一个class文件一个代理类,那么jdk是怎么实现动态代理的呢?


    类完整的生命周期.png

    我们知道在jdk里面,首先我们会写一个java源文件(.java文件),然后他会编译成对应.class文件(字节码),class文件在我们实际运行的时候,java虚拟机会通过类加载器把它加载出一个class对象,通过class对象再拿到各自实例对象(实例化),然后我们就可以通过这个对象调用各自方法了。
    然而在动态代理的时候,对我们动态代理类来讲是没有写java源文件(java文件)这一步的,那么jdk是如何实现的呢?其实,说穿了,在jdk里面,任何可以执行的一定是java字节码,当我们编译好了之后,就会生成.class文件,字节码就是01二进制串,可以放在硬盘里也可以放在内存里,甚至可以网上传递过来。那么动态代理是怎么创建代理类的呢?

    我们通过打断点发现,动态代理会生成一个$Proxy0对象,

    image

    那么个$Proxy0到底是怎么生成的呢?我们进入初始化方法Proxy.newProxyInstance方法看下

    @CallerSensitive
        public static Object newProxyInstance(ClassLoader loader,
                                              Class<?>[] interfaces,
                                              InvocationHandler h)
            throws IllegalArgumentException
        {
            Objects.requireNonNull(h);
    
            final Class<?>[] intfs = interfaces.clone();
            final SecurityManager sm = System.getSecurityManager();
            if (sm != null) {
                checkProxyAccess(Reflection.getCallerClass(), loader, intfs);
            }
    
            /*
             * Look up or generate the designated proxy class.
             */
            Class<?> cl = getProxyClass0(loader, intfs);
    
            /*
             * Invoke its constructor with the designated invocation handler.
             */
            try {
                if (sm != null) {
                    checkNewProxyPermission(Reflection.getCallerClass(), cl);
                }
    
                final Constructor<?> cons = cl.getConstructor(constructorParams);
                final InvocationHandler ih = h;
                if (!Modifier.isPublic(cl.getModifiers())) {
                    AccessController.doPrivileged(new PrivilegedAction<Void>() {
                        public Void run() {
                            cons.setAccessible(true);
                            return null;
                        }
                    });
                }
                return cons.newInstance(new Object[]{h});
            } catch (IllegalAccessException|InstantiationException e) {
                throw new InternalError(e.toString(), e);
            } catch (InvocationTargetException e) {
                Throwable t = e.getCause();
                if (t instanceof RuntimeException) {
                    throw (RuntimeException) t;
                } else {
                    throw new InternalError(t.toString(), t);
                }
            } catch (NoSuchMethodException e) {
                throw new InternalError(e.toString(), e);
            }
        }
    

    newProxyInstance方法里我们看到Class<?> cl = getProxyClass0(loader, intfs);这个方法应该就是通过反射拿到Proxy的Class对象,再通过Constructor<?> cons = cl.getConstructor(constructorParams);拿到c1的构造方法,我们再进到getProxyClass0方法里看下是怎么拿到class对象的

     /**
         * Generate a proxy class.  Must call the checkProxyAccess method
         * to perform permission checks before calling this.
         */
        private static Class<?> getProxyClass0(ClassLoader loader,
                                               Class<?>... interfaces) {
            if (interfaces.length > 65535) {
                throw new IllegalArgumentException("interface limit exceeded");
            }
    
            // If the proxy class defined by the given loader implementing
            // the given interfaces exists, this will simply return the cached copy;
            // otherwise, it will create the proxy class via the ProxyClassFactory
            return proxyClassCache.get(loader, interfaces);
        }
    

    这段代码里我们直接看到return proxyClassCache.get(loader, interfaces);很显然class对象是在这里拿到了的,字面意思我们才到就是从java的缓存里通过类加载器和接口拿到class对象,所以我们再点击get方法里看看

     public V get(K key, P parameter) {
            Objects.requireNonNull(parameter);
    
            expungeStaleEntries();
    
            Object cacheKey = CacheKey.valueOf(key, refQueue);
    
            // lazily install the 2nd level valuesMap for the particular cacheKey
            ConcurrentMap<Object, Supplier<V>> valuesMap = map.get(cacheKey);
            if (valuesMap == null) {
                ConcurrentMap<Object, Supplier<V>> oldValuesMap
                    = map.putIfAbsent(cacheKey,
                                      valuesMap = new ConcurrentHashMap<>());
                if (oldValuesMap != null) {
                    valuesMap = oldValuesMap;
                }
            }
    
            // create subKey and retrieve the possible Supplier<V> stored by that
            // subKey from valuesMap
            Object subKey = Objects.requireNonNull(subKeyFactory.apply(key, parameter));
            Supplier<V> supplier = valuesMap.get(subKey);
            Factory factory = null;
    
            while (true) {
                if (supplier != null) {
                    // supplier might be a Factory or a CacheValue<V> instance
                    V value = supplier.get();
                    if (value != null) {
                        return value;
                    }
                }
                // else no supplier in cache
                // or a supplier that returned null (could be a cleared CacheValue
                // or a Factory that wasn't successful in installing the CacheValue)
    
                // lazily construct a Factory
                if (factory == null) {
                    factory = new Factory(key, parameter, subKey, valuesMap);
                }
    
                if (supplier == null) {
                    supplier = valuesMap.putIfAbsent(subKey, factory);
                    if (supplier == null) {
                        // successfully installed Factory
                        supplier = factory;
                    }
                    // else retry with winning supplier
                } else {
                    if (valuesMap.replace(subKey, supplier, factory)) {
                        // successfully replaced
                        // cleared CacheEntry / unsuccessful Factory
                        // with our Factory
                        supplier = factory;
                    } else {
                        // retry with current supplier
                        supplier = valuesMap.get(subKey);
                    }
                }
            }
        }
    
    

    get是一个范型方法,前面一部分是从缓存map里根据可以取值,后面一部分我们注意到这段代码

    image.png
    一开始通过requireNonNull生成一个subKey,然后通过subKey从map里拿到一个Supplier<V> 数组,V就是这个get方法的类型,然后再从Supplier<V> 数组supplier里拿到最终值value,如果value!=null再返回。所以关键的地方应该就是requireNonNull这个方法,我们点进去发现
    image.png
    这里并没有真正实现的代码,所以我们注意到subKeyFactory.apply(key, parameter)这个方法,它是一个范型接口里的一个方法,所以我们查看apply这个方法的实现
    image.png
    我们进入最后一个看看
      @Override
            public Class<?> apply(ClassLoader loader, Class<?>[] interfaces) {
    
                Map<Class<?>, Boolean> interfaceSet = new IdentityHashMap<>(interfaces.length);
                for (Class<?> intf : interfaces) {
                    /*
                     * Verify that the class loader resolves the name of this
                     * interface to the same Class object.
                     */
                    Class<?> interfaceClass = null;
                    try {
                        interfaceClass = Class.forName(intf.getName(), false, loader);
                    } catch (ClassNotFoundException e) {
                    }
                    if (interfaceClass != intf) {
                        throw new IllegalArgumentException(
                            intf + " is not visible from class loader");
                    }
                    /*
                     * Verify that the Class object actually represents an
                     * interface.
                     */
                    if (!interfaceClass.isInterface()) {
                        throw new IllegalArgumentException(
                            interfaceClass.getName() + " is not an interface");
                    }
                    /*
                     * Verify that this interface is not a duplicate.
                     */
                    if (interfaceSet.put(interfaceClass, Boolean.TRUE) != null) {
                        throw new IllegalArgumentException(
                            "repeated interface: " + interfaceClass.getName());
                    }
                }
    
                String proxyPkg = null;     // package to define proxy class in
                int accessFlags = Modifier.PUBLIC | Modifier.FINAL;
    
                /*
                 * Record the package of a non-public proxy interface so that the
                 * proxy class will be defined in the same package.  Verify that
                 * all non-public proxy interfaces are in the same package.
                 */
                for (Class<?> intf : interfaces) {
                    int flags = intf.getModifiers();
                    if (!Modifier.isPublic(flags)) {
                        accessFlags = Modifier.FINAL;
                        String name = intf.getName();
                        int n = name.lastIndexOf('.');
                        String pkg = ((n == -1) ? "" : name.substring(0, n + 1));
                        if (proxyPkg == null) {
                            proxyPkg = pkg;
                        } else if (!pkg.equals(proxyPkg)) {
                            throw new IllegalArgumentException(
                                "non-public interfaces from different packages");
                        }
                    }
                }
    
                if (proxyPkg == null) {
                    // if no non-public proxy interfaces, use com.sun.proxy package
                    proxyPkg = ReflectUtil.PROXY_PACKAGE + ".";
                }
    
                /*
                 * Choose a name for the proxy class to generate.
                 */
                long num = nextUniqueNumber.getAndIncrement();
                String proxyName = proxyPkg + proxyClassNamePrefix + num;
    
                /*
                 * Generate the specified proxy class.
                 */
                byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
                    proxyName, interfaces, accessFlags);
                try {
                    return defineClass0(loader, proxyName,
                                        proxyClassFile, 0, proxyClassFile.length);
                } catch (ClassFormatError e) {
                    /*
                     * A ClassFormatError here means that (barring bugs in the
                     * proxy class generation code) there was some other
                     * invalid aspect of the arguments supplied to the proxy
                     * class creation (such as virtual machine limitations
                     * exceeded).
                     */
                    throw new IllegalArgumentException(e.toString());
                }
            }
    

    前面也是一大堆反射,我们注意到


    image.png

    从它注释Generate the specified proxy class,我们也可以确定他就是真正生成代理对象的地方,这里通过ProxyGenerator.generateProxyClass生成一个byte数组,然后再return一个defineClass0(loader, proxyName,proxyClassFile, 0,proxyClassFile.length);我们知道java里的.class文件实际上是有许多byte字节码组成的,所以我们猜测这里就是真正生成class对象的地方,defineClass0方法就是把字节数组转化为实际class的方法,我们点进去发现是一个native

    image.png

    native在java里应该就是C++代码来实现的。
    那么我们之前打断点的$Proxy0是怎么来的呢?

    image.png
    我们注意到这里的注释Choose a name for the proxy class to generate.选择一个名字给代理class,我们点进去 image.png
    这里的proxyClassNamePrefix是不是就是我们断点打出来的代理类的名字么,后面+num我们不用猜,肯定就是0,1,2,3。。。这样的num。那么ProxyGenerator.generateProxyClass
    怎么生成byte数组的呢?我们点进去,
    image.png
    从注释里可以看到,是系统编译器直接创建的,大致浏览下代码,就是各种IO操作,我猜测应该就是读写.class文件里的操作,文章最后我们会去揭秘。

    所以我们最后得出结论,动态代理调用newProxyInstance的时候,jdk会在内部通过各种反射,生成一个字节数组,然后通过defineClass0把字节数组转换成class文件,有了class文件之后,就像文章开头讲的一样,通过class对象再拿到各自实例对象(实例化),然后我们就可以通过这个对象调用各自方法了。

    • 最后我们来研究下 byte[] proxyClassFile = ProxyGenerator.generateProxyClass(
      proxyName, interfaces, accessFlags);到底是怎么实现的呢?

    这里最后生成的是 byte[] proxyClassFile字节数组,那我们把ProxyGenerator.generateProxyClass拷出来自己去生成不就好了么?
    具体生成代码如下:

     byte[] proxyClassFile =ProxyGenerator.generateProxyClass(
                    proxyName, new Class[]{clazz});
            String paths = clazz.getResource(".").getPath();
            System.out.println(paths);
            FileOutputStream out = null;
    
            try {
                out = new FileOutputStream(paths+proxyName+".class");
                out.write(proxyClassFile);
                out.flush();
            } catch (Exception e) {
                e.printStackTrace();
            }finally {
                try {
                    out.close();
                } catch (IOException e) {
                    e.printStackTrace();
                }
            }
    
    image.png image.png

    我们找到这个目录,看到一个$Proxy0.class,


    image.png

    我们再用java反编译工具打开


    image.png
    代码如下
    import java.lang.reflect.InvocationHandler;
    import java.lang.reflect.Method;
    import java.lang.reflect.Proxy;
    import java.lang.reflect.UndeclaredThrowableException;
    import proxy.FruitFactory;
    
    public final class $Proxy0 extends Proxy implements FruitFactory {
      private static Method m1;
      
      private static Method m8;
      
      private static Method m2;
      
      private static Method m3;
      
      private static Method m5;
      
      private static Method m4;
      
      private static Method m7;
      
      private static Method m9;
      
      private static Method m0;
      
      private static Method m6;
      
      public $Proxy0(InvocationHandler paramInvocationHandler) {
        super(paramInvocationHandler);
      }
      
      public final boolean equals(Object paramObject) {
        try {
          return ((Boolean)this.h.invoke(this, m1, new Object[] { paramObject })).booleanValue();
        } catch (Error|RuntimeException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      public final void notify() {
        try {
          this.h.invoke(this, m8, null);
          return;
        } catch (Error|RuntimeException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      public final String toString() {
        try {
          return (String)this.h.invoke(this, m2, null);
        } catch (Error|RuntimeException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      public final void saleFruit(int paramInt) {
        try {
          this.h.invoke(this, m3, new Object[] { Integer.valueOf(paramInt) });
          return;
        } catch (Error|RuntimeException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      public final void wait(long paramLong) throws InterruptedException {
        try {
          this.h.invoke(this, m5, new Object[] { Long.valueOf(paramLong) });
          return;
        } catch (Error|RuntimeException|InterruptedException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      public final void wait(long paramLong, int paramInt) throws InterruptedException {
        try {
          this.h.invoke(this, m4, new Object[] { Long.valueOf(paramLong), Integer.valueOf(paramInt) });
          return;
        } catch (Error|RuntimeException|InterruptedException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      public final Class getClass() {
        try {
          return (Class)this.h.invoke(this, m7, null);
        } catch (Error|RuntimeException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      public final void notifyAll() {
        try {
          this.h.invoke(this, m9, null);
          return;
        } catch (Error|RuntimeException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      public final int hashCode() {
        try {
          return ((Integer)this.h.invoke(this, m0, null)).intValue();
        } catch (Error|RuntimeException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      public final void wait() throws InterruptedException {
        try {
          this.h.invoke(this, m6, null);
          return;
        } catch (Error|RuntimeException|InterruptedException error) {
          throw null;
        } catch (Throwable throwable) {
          throw new UndeclaredThrowableException(throwable);
        } 
      }
      
      static {
        try {
          m1 = Class.forName("java.lang.Object").getMethod("equals", new Class[] { Class.forName("java.lang.Object") });
          m8 = Class.forName("proxy.FruitFactory").getMethod("notify", new Class[0]);
          m2 = Class.forName("java.lang.Object").getMethod("toString", new Class[0]);
          m3 = Class.forName("proxy.FruitFactory").getMethod("saleFruit", new Class[] { int.class });
          m5 = Class.forName("proxy.FruitFactory").getMethod("wait", new Class[] { long.class });
          m4 = Class.forName("proxy.FruitFactory").getMethod("wait", new Class[] { long.class, int.class });
          m7 = Class.forName("proxy.FruitFactory").getMethod("getClass", new Class[0]);
          m9 = Class.forName("proxy.FruitFactory").getMethod("notifyAll", new Class[0]);
          m0 = Class.forName("java.lang.Object").getMethod("hashCode", new Class[0]);
          m6 = Class.forName("proxy.FruitFactory").getMethod("wait", new Class[0]);
          return;
        } catch (NoSuchMethodException noSuchMethodException) {
          throw new NoSuchMethodError(noSuchMethodException.getMessage());
        } catch (ClassNotFoundException classNotFoundException) {
          throw new NoClassDefFoundError(classNotFoundException.getMessage());
        } 
      }
    }
    
    

    从上面的代码可以看出我们创建的动态代理类是派生自Proxy,并且实现了
    FruitFactory接口


    image.png
    image.png

    这是接口里的方法,他这里就是通过反射来实现这个方法的,这个h就是Proxy里的InvocationHandler


    image.png

    在$Proxy0.class里,我们可以看出来,这个class实际功能就和静态代理的代理类是一样的,只是jdk在内部帮我们去动态实现了这个代理类。

    最后总结:

    • 动态代理
      是指在使用时再创建代理类和实例
    • 优点
      只需要1个动态代理类就可以解决创建多个静态代理的问题,避免重复、多余代码
      更强的灵活性
    • 缺点
      效率低,相比静态代理中 直接调用目标对象方法,动态代理则需要先通过Java反射机制 从而 间接调用目标对象方法
    • 应用场景局限,因为 Java 的单继承特性(每个代理类都继承了 Proxy 类),即只能针对接口 创建 代理类,不能针对类创建代理类。
      在java的动态代理机制中,有两个重要的类或接口,一个是InvocationHandler接口、另一个则是 Proxy类,这个类和接口是实现我们动态代理所必须用到的。

    相关文章

      网友评论

        本文标题:源码解读java动态代理模式

        本文链接:https://www.haomeiwen.com/subject/dayphhtx.html