美文网首页
DeepBench (2) NVIDIA Tesla K80 性

DeepBench (2) NVIDIA Tesla K80 性

作者: 638b2974899d | 来源:发表于2017-12-27 16:58 被阅读0次

环境
Linux
GPU Tesla K80


步骤

0. DeepBench下载

从官网 https://github.com/baidu-research/DeepBench下载DeepBench包
git方式:

git clone https://github.com/baidu-research/DeepBench

1. 编译

  • 环境配置

NVIDIA benchmarks需要CUDA cuDNN MPI nccl
前三个可以直接由module导入,这里使用的是CUDA8.0 cuDNN5.1 openmpi1.10.2,nccl使用自己安装好的路径

后面出现的问题多半是这几个库的版本问题

export MODULEPATH=/BIGDATA/app/modulefiles_GPU/:/BIGDATA/app/modulefiles
module load CUDA/8.0
module load cudnn/5.1-CUDA8.0
module load openmpi/1.10.2-gcc4.9.2
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/HOME/user_name/nccl/path/lib

从DeepBench目录下进入NVIDIA目录

cd code/nvidia
  • build

使用官网给出的build方法,build似乎可以不用yhrun,make后要加上ARCH配置

yhrun -n 1 make CUDA_PATH=/BIGDATA/app/CUDA/8.0 CUDNN_PATH=/BIGDATA/app/cuDNN/5.1-CUDA8.0 MPI_PATH=/BIGDATA/app/openmpi/1.10.2-gcc4.9.2 NCCL_PATH=/HOME/user_name/nccl ARCH=sm_30,sm_32,sm_35,sm_50,sm_52,sm_60,sm_61,sm_62,sm_70

或者修改Makefile

也可以分开build,比如conv

make conv
#具体:
yhrun -n 1 make CUDA_PATH=/BIGDATA/app/CUDA/8.0 CUDNN_PATH=/BIGDATA/app/cuDNN/5.1-CUDA8.0 MPI_PATH=/BIGDATA/app/openmpi/1.10.2-gcc4.9.2 NCCL_PATH=/HOME/user_name/nccl ARCH=sm_30,sm_32,sm_35,sm_50,sm_52,sm_60,sm_61,sm_62 conv

build 成功

mkdir -p bin
/BIGDATA/app/CUDA/8.0/bin/nvcc conv_bench.cu -DPAD_KERNELS=1 -o bin/conv_bench -I ../kernels/ -I /BIGDATA/app/CUDA/8.0/include -I /BIGDATA/app/cuDNN/5.1-CUDA8.0/include/ -L /BIGDATA/app/cuDNN/5.1-CUDA8.0/lib64/ -L /BIGDATA/app/CUDA/8.0/lib64 -lcurand -lcudnn --generate-code arch=compute_30,code=sm_30 --generate-code arch=compute_32,code=sm_32 --generate-code arch=compute_35,code=sm_35 --generate-code arch=compute_50,code=sm_50 --generate-code arch=compute_52,code=sm_52 --generate-code arch=compute_60,code=sm_60 --generate-code arch=compute_61,code=sm_61 --generate-code arch=compute_62,code=sm_62 -std=c++11

运行前设置好LD_LIBRARY

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/BIGDATA/app/CUDA/8.0:/BIGDATA/app/cuDNN/5.1-CUDA8.0:/BIGDATA/app/PGIcompiler/17.1/linux86-64/2017/mpi/openmpi-1.10.2:/HOME/user_name/nccl

2. 运行测试

  • gemm benchmark

nvidia目录下

yhrun -n 1 ./bin/gemm_bench

CUDA8.0 cudnn5.1 配置下运行会报错,由于CUDA是天河配置好的,我不会改

terminate called after throwing an instance of 'std::runtime_error'
what():  sgemm failed
   1760     16   1760      0      0
halfyhrun: error: gn26: task 0: Aborted (core dumped)

CUDA7.0 cudnn4.0 配置可以正常运行
一部分结果

### CUDA7.0 cudnn4.0 openmpi1.10.2 nccl1 ###

                  Running training benchmark 
                         Times
----------------------------------------------------------------------------------------
    m       n      k      a_t     b_t      precision        time (usec) 
   1760     16   1760      0      0        float                 340 .
    ...
     略
  • conv benchmark

nvidia目录下

yhrun -n 1 ./bin/conv_bench

CUDA8.0 cudnn6.0 可编译但无法运行
CUDA7.0 cudnn4.0 无法编译,会提示缺很多东西,可能是版本过老
CUDA8.0 cudnn5.1 配置运行中途会报错:运行到第11个算例时出现runtime_error导致运行中止

Illegal algorithm passed to get_fwd_algo_string. Algo: 7

把conv_bench.cu文件中的std::string get_fwd_algo_string()函数中最后一部分的

else {
            std::stringstream ss;
            ss << "Illegal algorithm passed to get_fwd_algo_string. Algo: " << fwd_algo_ << std::endl;
            throw std::runtime_error(ss.str());
        }

改成

else {
            return "#unknown"
        }

重新编译后再运行,即可越过有问题的段落,第11个显示的是unknown,后面还有好多unknown

### CUDA8.0 cudnn5.1 openmpi1.10.2 nccl1 ###

                  Running training benchmark 
                         Times
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
   w      h      c      n      k      f_w    f_h  pad_w  pad_h    stride_w  stride_h    precision  fwd_time (usec)  bwd_inputs_time (usec)  bwd_params_time (usec)  total_time (usec)   fwd_algo 
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
  700    161      1      4     32     20      5      0       0         2         2     float            929                    1136                    1074               3139            IMPLICIT_GEMM
  700    161      1      8     32     20      5      0       0         2         2     float           1587                    2168                    1928               5683            IMPLICIT_GEMM
  700    161      1     16     32     20      5      0       0         2         2     float           2813                    4337                    3508              10658    IMPLICIT_PRECOMP_GEMM
  700    161      1     32     32     20      5      0       0         2         2     float           6368                    8659                    6899              21926            IMPLICIT_GEMM
  341     79     32      4     32     10      5      0       0         2         2     float           2174                    4076                    2506               8756    IMPLICIT_PRECOMP_GEMM
  341     79     32      8     32     10      5      0       0         2         2     float           4211                    8128                    5007              17346    IMPLICIT_PRECOMP_GEMM
  341     79     32     16     32     10      5      0       0         2         2     float           8459                   16200                    9985              34644    IMPLICIT_PRECOMP_GEMM
  341     79     32     32     32     10      5      0       0         2         2     float          16903                   32380                   20188              69471    IMPLICIT_PRECOMP_GEMM
  480     48      1     16     16      3      3      1       1         1         1     float            752                    1014                    1515               3281            IMPLICIT_GEMM
  240     24     16     16     32      3      3      1       1         1         1     float            863                    1332                    1258               3453            IMPLICIT_GEMM
  120     12     32     16     64      3      3      1       1         1         1     float            613                     652                    1005               2270                 #unknown
  ...
   略
  • rnn benchmark

nvidia目录下

yhrun -n 1 ./bin/rnn_bench

CUDA8.0 cudnn5.1 配置下可正常运行

### CUDA8.0 cudnn5.1 openmpi1.10.2 nccl1 ###

Running training benchmark 
                         Times
----------------------------------------------------------------------------------------
    type    hidden   N     timesteps   precision     fwd_time (usec)   bwd_time (usec)
 vanilla    1760      16      50         float             19590             17450
 vanilla    1760      32      50         float             18289             18044
     ...
    lstm     512      16      25         float              3888              5551
    lstm     512      32      25         float              3922              5603
     ...  
     gru    2816      32    1500         float           2638524           2475404
     gru    2816      32     750         float           1319982           1240556
     ...
      略     
  • all reduce benchmark

nccl_single_all_reduce
nvidia目录下

yhrun -n 1 ./bin/nccl_single_all_reduce 2

可以正常运行

 NCCL AllReduce 
 Num Ranks: 2
---------------------------------------------------------------------------
    # of floats    bytes transferred    Time (msec)   
---------------------------------------------------------------------------
         100000         400000               0.109
        3097600       12390400               1.344
            ...
             略

nccl_mpi_all_reduce
nvidia目录下

yhrun -n 2 -N 2 mpirun -np 2 ./bin/nccl_mpi_all_reduce 

可以运行但无结果,我在那个目录下有报错提示缺失的文件,不知为什么会这样报错

mca: base: component_find: unable to open /BIGDATA/app/openmpi/1.10.2-gcc4.9.2/lib/openmpi/mca_btl_scif: libscif.so.0: cannot open shared object file: No such file or directory (ignored)

3. 使用yhbatch测试

由于测试时间长,VPN总掉线,可以使用yhbatch来运行
创建一个test.sh,文件test.sh内容如下:

#! /bin/bash
yhrun -n xx xxx_bench (yhrun语句)

再使用yhbatch命令

yhbatch -n 1 ./test.sh

这样即可将任务提交上去
任务完成后会有一个slurm_jobid.out文件,原本输出到控制台的语句都可以在这里找到

相关文章

网友评论

      本文标题:DeepBench (2) NVIDIA Tesla K80 性

      本文链接:https://www.haomeiwen.com/subject/depugxtx.html