4月23日,世界读书日,全称为世界图书与版权日,又称"世界图书日"。其设立目的是推动更多的人去阅读和写作,希望所有人都能尊重和感谢为人类文明做出过巨大贡献的文学、文化、科学、思想大师们,保护知识产权。
大数据行业前景看好,有很多朋友对大数据行业心向往之,却苦于不知道该如何下手,或者说学习大数据不知道应该看些什么书。作为一个零基础大数据入门学习者该看哪些书?今天给大家推荐一位知乎网友挖矿老司机的指导贴,作为参考。
就目前公司招聘和其他所了解到的大数据专业的工作内容,偏重方向和技术选型有所不同。挖矿老司机就不同职业学习的书籍进行了分类推荐。
很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习企鹅群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系
1. 大数据工程师
在互联网公司广泛招聘,偏平台业务方向,ETL和OLTP等,主要是基于Hadoop技术栈来处理大数据,算法要求不是特别高。
经典图书推荐:
《Hadoop权威指南》
《Hive编程指南》
《Hbase权威指南》
《大数据技术全解》
《大数据挑战NoSql》
《Mahout实战》
2. 数据分析师:
在拥有行业数据的电商、金融、电信、咨询等行业里做业务咨询,商务智能,出分析报告,互联网公司的产品经理差不多类型了,统计学能力要求高,SPSS、SAS、R、SQL。
经典图书推荐:
《概率论与数理统计》、《统计学》推荐David Freedman版、《业务建模与数据挖掘》、《数据挖掘导论》、《SAS编程与数据挖掘商业案例》、《Clementine数据挖掘方法及应用》、《IBM SPSS Statistics 19 Statistical Procedures Companion》等。
3. 数据挖掘工程师:
在互联网、电商、搜索、社交等大数据相关行业里做机器学习算法实现和分析,基本数据结构算法、机器学习等都要求较高。Hadoop、spark技术栈,Java、Python、C++、Scala、Shell。
经典图书推荐:《数据挖掘概念与技术》、《数据挖掘导论》、《数据挖掘-实用机器学习技术》;《机器学习》Tom Michael 、《机器学习导论》、周志华《机器学习》、《机器学习实战》、《集体智慧编程》、《统计学习方法》ESL 《Elements of Statistical Learning》 ISL 《An Introduction to Statistical Learning》PRML 《Pattern Recognition and Machine Learning》《数据库系统概论》、《算法导论》、《Web数据挖掘》、《推荐系统》、《数据可视化》《Thinking in Java》、《Python核心编程》、《Thinking in C++》等。
4. 科学研究方向:
在高校、科研单位、企业研究院等高大上科研机构研究新算法效率改进及未来应用,还有现在很多计算机视觉的创业公司的算法研究。
经典图书推荐:《机器学习》《模式分类》《统计学习理论的本质》《统计学习方法》《数据挖掘实用机器学习技术》《R语言实践》,《人工智能及其应用》、《概率图模型》英文素质是科研人才必备的《Machine Learning: A Probabilistic Perspective》《Scaling up Machine Learning : Parallel and Distributed Approaches》《Data Mining Using SAS Enterprise Miner : A Case Study Approach》《Python for Data Analysis》等。
很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习企鹅群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系
网友评论