美文网首页
简单对比两图片相似度

简单对比两图片相似度

作者: TinyThing | 来源:发表于2019-11-01 16:42 被阅读0次
    package com.fly.dnf;
    
    import javax.imageio.ImageIO;
    import java.awt.*;
    import java.awt.color.ColorSpace;
    import java.awt.image.BufferedImage;
    import java.awt.image.ColorConvertOp;
    import java.io.*;
    
    /*
     * pHash-like image hash.
     * Author: Elliot Shepherd (elliot@jarofworms.com
     * Based On: http://www.hackerfactor.com/blog/index.php?/archives/432-Looks-Like-It.html
     */
    public class ImageUtils {
    
        private int size = 32;
        private int smallerSize = 8;
    
        public ImageUtils() {
            initCoefficients();
        }
    
        public ImageUtils(int size, int smallerSize) {
            this.size = size;
            this.smallerSize = smallerSize;
    
            initCoefficients();
        }
    
        public int distance(String s1, String s2) {
            int counter = 0;
            for (int k = 0; k < s1.length(); k++) {
                if (s1.charAt(k) != s2.charAt(k)) {
                    counter++;
                }
            }
            return counter;
        }
    
        public String getHash(InputStream is) {
            BufferedImage img = null;
            try {
                img = ImageIO.read(is);
            } catch (IOException e) {
                e.printStackTrace();
            }
            return getHash(img);
        }
    
        // Returns a 'binary string' (like. 001010111011100010) which is easy to do a hamming distance on.
        public String getHash(BufferedImage img) {
    
            /* 1. Reduce size.
             * Like Average Hash, pHash starts with a small image.
             * However, the image is larger than 8x8; 32x32 is a good size.
             * This is really done to simplify the DCT computation and not
             * because it is needed to reduce the high frequencies.
             */
            img = resize(img, size, size);
    
            /* 2. Reduce color.
             * The image is reduced to a grayscale just to further simplify
             * the number of computations.
             */
            img = grayscale(img);
    
            double[][] vals = new double[size][size];
    
            for (int x = 0; x < img.getWidth(); x++) {
                for (int y = 0; y < img.getHeight(); y++) {
                    vals[x][y] = getBlue(img, x, y);
                }
            }
    
            /* 3. Compute the DCT.
             * The DCT separates the image into a collection of frequencies
             * and scalars. While JPEG uses an 8x8 DCT, this algorithm uses
             * a 32x32 DCT.
             */
            long start = System.currentTimeMillis();
            double[][] dctVals = applyDCT(vals);
            System.out.println("DCT: " + (System.currentTimeMillis() - start));
    
            /* 4. Reduce the DCT.
             * This is the magic step. While the DCT is 32x32, just keep the
             * top-left 8x8. Those represent the lowest frequencies in the
             * picture.
             */
            /* 5. Compute the average value.
             * Like the Average Hash, compute the mean DCT value (using only
             * the 8x8 DCT low-frequency values and excluding the first term
             * since the DC coefficient can be significantly different from
             * the other values and will throw off the average).
             */
            double total = 0;
    
            for (int x = 0; x < smallerSize; x++) {
                for (int y = 0; y < smallerSize; y++) {
                    total += dctVals[x][y];
                }
            }
            total -= dctVals[0][0];
    
            double avg = total / (double) ((smallerSize * smallerSize) - 1);
    
            /* 6. Further reduce the DCT.
             * This is the magic step. Set the 64 hash bits to 0 or 1
             * depending on whether each of the 64 DCT values is above or
             * below the average value. The result doesn't tell us the
             * actual low frequencies; it just tells us the very-rough
             * relative scale of the frequencies to the mean. The result
             * will not vary as long as the overall structure of the image
             * remains the same; this can survive gamma and color histogram
             * adjustments without a problem.
             */
            String hash = "";
    
            for (int x = 0; x < smallerSize; x++) {
                for (int y = 0; y < smallerSize; y++) {
                    if (x != 0 && y != 0) {
                        hash += (dctVals[x][y] > avg ? "1" : "0");
                    }
                }
            }
    
            return hash;
        }
    
        private BufferedImage resize(BufferedImage image, int width, int height) {
            BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
            Graphics2D g = resizedImage.createGraphics();
            g.drawImage(image, 0, 0, width, height, null);
            g.dispose();
            return resizedImage;
        }
    
        private ColorConvertOp colorConvert = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);
    
        private BufferedImage grayscale(BufferedImage img) {
            colorConvert.filter(img, img);
            return img;
        }
    
        private static int getBlue(BufferedImage img, int x, int y) {
            return (img.getRGB(x, y)) & 0xff;
        }
    
        // DCT function stolen from http://stackoverflow.com/questions/4240490/problems-with-dct-and-idct-algorithm-in-java
    
        private double[] c;
    
        private void initCoefficients() {
            c = new double[size];
    
            for (int i = 1; i < size; i++) {
                c[i] = 1;
            }
            c[0] = 1 / Math.sqrt(2.0);
        }
    
        private double[][] applyDCT(double[][] f) {
            int N = size;
    
            double[][] F = new double[N][N];
            for (int u = 0; u < N; u++) {
                for (int v = 0; v < N; v++) {
                    double sum = 0.0;
                    for (int i = 0; i < N; i++) {
                        for (int j = 0; j < N; j++) {
                            sum += Math.cos(((2 * i + 1) / (2.0 * N)) * u * Math.PI) * Math.cos(((2 * j + 1) / (2.0 * N)) * v * Math.PI) * (f[i][j]);
                        }
                    }
                    sum *= ((c[u] * c[v]) / 4.0);
                    F[u][v] = sum;
                }
            }
            return F;
        }
    
    }
    
    

    相关文章

      网友评论

          本文标题:简单对比两图片相似度

          本文链接:https://www.haomeiwen.com/subject/dpqqbctx.html