1、引言
随着Android系统的不断升级,即时通讯网技术群和社区里的IM和推送开发的程序员们,对于进程保活这件事是越来越悲观,必竟系统对各种保活黑科技的限制越来越多了,想超越系统的挚肘,难度越来越大。
但保活这件事就像“激情”之后的余味,总是让人欲罢不能,想放弃又不甘心。那么,除了像上篇《2020年了,Android后台保活还有戏吗?看我如何优雅的实现!》这样的正经白名单方式,不正经的“黑科技”是否还有发挥的余地?
答案是肯定的,“黑科技”仍发挥的余地。不是“黑科技”不行,而是技术没到位。
研究TIM的保活是一次偶然机会,发现在安全中心关闭了它的自启动功能的情况下, 一键清理、强力清理等各大招都无法彻底杀掉TIM,系统的自启动拦截也没能阻止TIM的永生,这引起了我强烈的兴趣,于是便有了本文。
本文将从Andriod系统层面为你深入剖析腾讯TIM这款IM应用的超强保活能力,希望能给你带来更多Android方面的灵感。
特别申明:本文的技术研究和分析过程,仅供技术爱好者学习的用途,请勿用作非法用途。如有不妥,请联系站长。
扩展知识:腾讯TIM是什么?(以下文字来自百度百科)
TIM是由腾讯公司于2016年11月发布的多平台IM客户端应用。TIM是在QQ轻聊版的基础上加入了协同办公服务的支持,可QQ号登录,以及好友、消息同步等,适合办公使用。
2、本文作者
史上最强Android保活思路:深入剖析腾讯TIM的进程永生技术袁辉辉:2019年5月加入字节跳动移动平台部。毕业于西安电子科技大,曾就职于小米、联想、IBM。
之前主要经历从事Android手机系统研发,在上一份小米MIUI系统组工作期间主要负责小米手机Android Framework架构优化、系统稳定、技术预研、平台建设等工作。热衷于研究Android系统内核技术,对Android系统框架有着深刻理解与丰富的实战经验,编写近200篇高质量文章,多次受邀参加业内Android技术大会演讲。
3、保活技术回顾
Android保活技术的进化,可以分为几个阶段。
第一个阶段:也就是各种“黑科技”盛行的时代,比如某Q搞出来的1像素、后台无声音乐(某运动计步APP就干过)等等。
这个阶段的一些典型主要技术手段,可以看以下这几篇文章:
- 《应用保活终极总结(一):Android6.0以下的双进程守护保活实践》
- 《Android进程保活详解:一篇文章解决你的所有疑问》
- 《微信团队原创分享:Android版微信后台保活实战分享(进程保活篇)》
第二个阶段:到了Android 6.0时代以后,Android保活就开始有点技术难度了,之前的各种无脑保活方法开始慢慢失效。
这个阶段的一些典型技术手段,可以读读以下这几篇文章:
第三个阶段:进入Android 8.0时代,Android直接在系统层面进行了各种越来越严格的管控,可以用的保活手段越来越少,保活技术的发展方向已发分化为两个方向——要么用白名单的方式走正经的保活路径、要么越来越“黑”一“黑”到底(比如本文将要介绍的TIM的保活手段)。
这个阶段可以用的保活已经手段不多了,以下几篇盘点了目前的一些技术可行性现状等:
- 《Android P正式版即将到来:后台应用保活、消息推送的真正噩梦》
- 《全面盘点当前Android后台保活方案的真实运行效果(截止2019年前)》
- 《2020年了,Android后台保活还有戏吗?看我如何优雅的实现!》
4、什么是保活?
保活就是在用户主动杀进程,或者系统基于当前内存不足状态而触发清理进程后,该进程设法让自己免于被杀的命运或者被杀后能立刻重生的手段。
保活是”应用的蜜罐,系统的肿瘤“,应用高保活率给自己赢得在线时长,甚至做各种应用想做而用户不期望的行为,给系统带来的是不必要的耗电,以及系统额外的性能负担。
保活方案一直就层出不穷,APP开发们不断地绞尽脑汁让自己的应用能存活得时间更长, 主要思路有以下两个。
提升进程优先级,降低被杀概率:
- 1)比如监听SCREEN_ON/OFF广播,启动一像素的透明Activity;
- 2)启动空通知,提升fg-service;
- ... ...
进程被杀后,重新拉起进程:
- 1)监听系统或者第3方广播拉起进程。但目前安全中心/Whetstone已拦截;
- 2)Native fork进程相互监听,监听到父进程被杀,则通过am命令启动进程。force-stop会杀整个进程组,所以这个方法几乎很难生效了。
5、初步分析
5.1初识TIM
执行命令adb shell ps | grep tencent.tim,可见TIM共有4个进程, 其父进程都是Zygote:
`root@gityuan:/` `# ps | grep tencent.tim`
`u0_a146 27965 551 1230992 43964 SyS_epoll_ 00f6df4bf0 S com.tencent.tim:Daemon`
`u0_a146 27996 551 1252492 54032 SyS_epoll_ 00f6df4bf0 S com.tencent.tim:MSF`
`u0_a146 28364 551 1348616 89204 SyS_epoll_ 00f6df4bf0 S com.tencent.tim:mail`
`u0_a146 31587 551 1406128 147976 SyS_epoll_ 00f6df4bf0 S com.tencent.tim`
5.2一键清理看现象,排查初步怀疑
以下是对TIM执行一键清理后的日志:
`12-21 21:12:20.265 1053 1075 I am_kill : [0,4892,com.tencent.tim:Daemon,5,stop com.tencent.tim: from pid 4617]`
`12-21 21:12:20.272 1053 1075 I am_kill : [0,5276,com.tencent.tim:mail,2,stop com.tencent.tim: from pid 4617]`
`12-21 21:12:20.305 1053 1075 I am_kill : [0,4928,com.tencent.tim,2,stop com.tencent.tim: from pid 4617]`
`12-21 21:12:20.330 1053 1075 I am_kill : [0,4910,com.tencent.tim:MSF,0,stop com.tencent.tim: from pid 4617]`
`12-21 21:13:59.920 1053 1466 I am_proc_start: [0,5487,10146,com.tencent.tim:MSF,service,com.tencent.tim``/com``.tencent.mobileqq.app.DaemonMsfService]`
`12-21 21:13:59.984 1053 1604 I am_proc_start: [0,5516,10146,com.tencent.tim,content provider,com.tencent.tim``/com``.tencent.mqq.shared_file_accessor.ContentProviderImpl]`
Force-stop是系统提供的杀进程最为彻底的方式,详见文章《Android进程绝杀技–forceStop》。从日志可以发现一键清理后TIM的4个进程全部都已被Force-stop。但进程com.tencent.tim:MSF立刻就被DaemonMsfService服务启动过程而拉起。
问题1:安全中心已配置了禁止TIM的自启动, 并且安全中心和系统都有对进程自启动以及级联启动的严格限制,为何会有漏网之鱼?
**怀疑1: **是否安全中心自启动没能有效限制,以及微信/QQ跟TIM有所级联,比如com.tencent.mobileqq.app.DaemonMsfService服务名中以com.tencent.mobileqq(QQ的包名)开头。
经过dumpsys以及反复验证后排除了这种可能性,如下:
`12-21 21:12:20.266 1053 1075 I AutoStartManagerService: MIUILOG- Reject RestartService packageName :com.tencent.tim uid : 10146`
`12-21 21:12:20.291 1053 1075 I AutoStartManagerService: MIUILOG- Reject RestartService packageName :com.tencent.tim uid : 10146`
`12-21 21:12:20.323 1053 1075 I AutoStartManagerService: MIUILOG- Reject RestartService packageName :com.tencent.tim uid : 10146`
`12-21 21:12:20.323 1053 1075 I AutoStartManagerService: MIUILOG- Reject RestartService packageName :com.tencent.tim uid : 10146`
`12-21 21:12:20.331 1053 1075 I AutoStartManagerService: MIUILOG- Reject RestartService packageName :com.tencent.tim uid : 10146`
`12-21 21:12:20.332 1053 1075 I AutoStartManagerService: MIUILOG- Reject RestartService packageName :com.tencent.tim uid : 10146`
怀疑2: 是否在TIM进程被杀后, 收到BinderDied后的死亡回调过程中将Service再次拉起,这个情况也很快就被排除, 因为force-stop这种冷面强力杀手, 并不会等到死亡回调再去清理进程相关信息,而是直接连根拔起,并不会走到AMS的死亡回调。
**怀疑3: **TIM设置了alarm机制,在callApp为空符合特征, 但经过分析这里就是普通的startService, 非startServiceInPackage(), 也排除了这种可能性:
`//``启动DaemonAssistService时,callApp为空,只有通过PendingIntent方式才可能出现这种情况`
`12-21 21:56:54.653 3181 3195 I am_start_service: [-1,NULL,10146,com.tencent.tim:Daemon,com.tencent.tim``/com``.tencent.mobileqq.app.DaemonAssistService,{``cmp``=com.tencent.tim``/com``.tencent.mobileqq.app.DaemonAssistService}]`
`12-21 21:56:56.666 3181 3827 I am_start_service: [-1,NULL,10146,com.tencent.tim:MSF,com.tencent.tim``/com``.tencent.mobileqq.app.DaemonMsfService,{``cmp``=com.tencent.tim``/com``.tencent.mobileqq.app.DaemonMsfService}]`
既然排除以上3种可能,直接上断点来看看吧。
5.3Android Studio断点分析
一上断点就发现了意外的一幕:
问题2:startService()的callingPid怎么可能等于0?
5.3.1)分析callingPid=0:
为什么说上面是意外的一幕呢?这需要对binder底层原理有一定深入理解,才能看出一些端倪,那就是此处callingPid=0是不合理逻辑的。很多人可能不太理解为何就不合乎逻辑, 这要从Binder原理说起, startService()这个Binder call是属于同步binder调用, 对于binder调用过程,只有异步Binder调用的情况下callingPid=0才会为空, 因为不需要reply应答数据给发送binder请求的那一端。 但如果是同步的,则必须要给出callingPid,否则无法将应答数据回传给发送方。 这是由Binder Driver所决定的,见如下Binder Driver核心代码。
(1) Binder发起端:根据当前ONE_WAY来决定是否设置from线程
`binder_transaction(...) {`
`...`
`if` `(!reply && !(tr->flags & TF_ONE_WAY))`
`t->from =` `thread``;`
`else`
`t->from = NULL;`
`}`
`...`
`}`
(2) Binder接收端: 根据from线程是否为空, 来决定sender_pid是否为0. 这便是Java层所说的callingPid
`binder_thread_read(...) {`
`...`
`t_from = binder_get_txn_from(t);`
`if` `(t_from) {`
`struct` `task_struct *sender = t_from->proc->tsk;`
`tr.sender_pid = task_tgid_nr_ns(sender,`
`task_active_pid_ns(current));`
`}` `else` `{`
`tr.sender_pid = 0;`
`}`
`...`
`}`
上述代码表明: 同步的Binder调用的情况下则callingPid必定不等于0。
下面告诉大家如何看一个Binder调用是否同步, 如下图最后一个参数代表的是FLAG_ONEWAY值,等于0则代表的是同步, 等于1则代表的是异步。
史上最强Android保活思路:深入剖析腾讯TIM的进程永生技术以上代码是framework的框架代码,startService最终都会调用到这里来,所以callingPid必然是不可能出现为0的情况,让我们看不透到底哪个进程把com.tencent.tim: Daemon拉起的。
5.3.2)揭秘:
从前面的分析来看callingPid是不可能为0的, 但从结果来看的确是0, 出现矛盾就一定有反常规存在,难道是存在同步的Binder调用,也存在同时callingPid=0的case?答案是No.
从源码角度来看是没有这种可能性存在,后面再进一步追踪flags值的变化,从如下的flags=17,可以确定的是此处的startService的binder call是ONE_WAY的,这就可以确定的确是发起了异步的Binder调用。
代码如下:
虽然callingPid=0,但从callUid=10146可以确定的一点是com.tencent.tim: Daemon进程是被来自TIM应用自身的某个进程所拉起的。
5.4小结
通过前面的初步分析,先整理一下思路,有以下初步结论:
- 1)TIM至少有4个进程,且都是由Zygote进程fork, 保活是通过startService被拉起;
- 2)排除 安全中心的对TIM限制自启动功能失效的情况;
- 3)排除 TIM进程被杀后的Binder死亡回调过程通过Service重新拉起进程;
- 4)排除 alarm机制 拉起进程;
- 5)从callingPid=0,可以得出TIM没有走常规的系统框架中提供的startService()接口来启动服务,而是自定义的方式;
- 6)从callingUid=10146, 可以得出TIM救活自己的方式,是通过TIM自身,而非系统或者第三方应用拉起。
**到此不难得出一个猜想: **首先TIM应用能做到监听应用进程被杀的情况, 其次是TIM应用自身替换掉或者自定义一套Binder调用,主动跟Binder驱动进行数据交互。
6、深入分析
6.1寻求规律
TIM应用有4个进程,不断反复地尝试杀TIM每一个进程后,观察自启动的情况后。 发现了一个规律:com.tencent.tim: Daemon和com.tencent.tim:MSF进程任一被杀,都会先把对方进程拉起,然后跟着自杀后,再重启。
接下来就把范围锁定在这两个进程,然后来tracing信号处理情况。
6.2从signal角度来分析
打开signal开关:
`root@gityuan:/` `# echo 1 > /d/tracing/events/signal/enable`
`root@gityuan:/` `# echo 1 > /d/tracing/tracing_on`
执行如下命令抓取tracing log:
`root@cancro/:` `cat` `/d/tracing/trace_pipe`
日志如下:
`//``通过adb shell` `kill` `-9 10649, 将com.tencent.tim:Daemon进程杀掉`
`sh-22775 [000] d..2 18844.276419: signal_generate: sig=9 errno=0 code=0` `comm``=cent.tim:Daemon pid=10649 grp=1 res=0`
`//` `线程Thread-89 将tencent.tim:MSF进程也杀掉了`
`Thread-89-10712 [000] dn.2 18844.340735: signal_generate: sig=9 errno=0 code=0` `comm``=tencent.tim:MSF pid=10669 grp=1 res=0`
`Binder:14682_4-14845 [000] d..2 18844.340779: signal_deliver: sig=9 errno=0 code=0 sa_handler=0 sa_flags=0`
`Binder:14682_1-14694 [000] d..2 18844.341418: signal_deliver: sig=9 errno=0 code=0 sa_handler=0 sa_flags=0`
`Binder:14682_2-14697 [000] d..2 18844.345075: signal_deliver: sig=9 errno=0 code=0 sa_handler=0 sa_flags=0`
`tencent.tim:MSF-14682 [000] dn.2 18844.345115: signal_deliver: sig=9 errno=0 code=0 sa_handler=0 sa_flags=`
从这里,可以发现com.tencent.tim: Daemon进程是由于其中一个线程Thread-89所杀,但从名字来看Thread-xxx,很明显是系统自动生成的编号。
问题3:进程内的名叫“Thread-89”的线程具有什么特点,如何做到把进程杀掉?
从下面的截图,可以看出MSF进程的这个特殊的线程当前在执行flock_lock操作,这个明显是一个文件加锁的操作, 这个方法很快就引起了我的注意。同理Daemon进程也有一个这样的线程, 离真相有近了一步。
史上最强Android保活思路:深入剖析腾讯TIM的进程永生技术 史上最强Android保活思路:深入剖析腾讯TIM的进程永生技术再来看看调用栈情况:
`Cmd line: com.tencent.tim:Daemon`
`"Thread-89"` `prio=10 tid=12 Native`
`| group=``"main"` `sCount=1 dsCount=0 obj=0x32c07460 self=0xf3382000`
`| sysTid=10712` `nice``=-8 cgrp=bg_non_interactive sched=0``/0` `handle=0xee824930`
`| state=S schedstat=( 44972457 14188383 124 ) utm=1 stm=3 core=0 HZ=100`
`| stack=0xee722000-0xee724000 stackSize=1038KB`
`| held mutexes=`
`kernel: __switch_to+0x74``/0x8c`
`kernel: flock_lock_file_wait+0x2a4``/0x318`
`kernel: SyS_flock+0x19c``/0x1a8`
`kernel: el0_svc_naked+0x20``/0x28`
`native:` `#00 pc 000423d4 /system/lib/libc.so (flock+8)`
`native:` `#01 pc 0000195d /data/app/com.tencent.tim-1/lib/arm/libdaemon_acc.so (_Z9lock_filePc+64)`
`...`
`native:` `#29 pc 0000191f /data/app/com.tencent.tim-1/lib/arm/libdaemon_acc.so (_Z9lock_filePc+2)`
`native:` `#30 pc 0000191d /data/app/com.tencent.tim-1/lib/arm/libdaemon_acc.so (_Z9lock_filePc)`
`native:` `#31 pc 0000191b /data/app/com.tencent.tim-1/lib/arm/libdaemon_acc.so (_Z18notify_and_waitforPcS_+102)`
`...`
`native:` `#63 pc 000018d1 /data/app/com.tencent.tim-1/lib/arm/libdaemon_acc.so (_Z18notify_and_waitforPcS_+28)`
`at com.libwatermelon.WaterDaemon.doDaemon2(Native method)`
`at com.libwatermelon.strategy.WaterStrategy2$2.run(WaterStrategy2.java:111)`
从这个线程的调用栈中的名字, notify_and_waitfor让我想到了这极有可能用于监听文件来获知进程是否存活。 为了进一步观察这个特殊线程的工作使命, 这里还不需要GDB, 祭出strace大招应该就差不多。
6.3利用strace分析
`root@gityuan:/` `# strace -CttTip 22829 -CttTip 22793`
结果如下:
flock基础知识简介:
flock是Linux文件锁,用于多个进程同时操作同一个文件时,通过加锁机制保证数据的完整,flock使用场景之一,便是用于检测进程是否存在。flock属于建议性的锁,而非强制性锁,只是进程可以直接操作正被另一个进程用flock锁住的文件, 原因在于flock只检测文件是否加锁,内核并不会强制阻塞其他进程的读写操作,这便是建议性锁的内核策略。
`方法原型:` `int` `flock(``int` `fd,` `int` `operation)`
第一个参数是文件描述符,第二参数指定锁的类型,有以下3个可选值:
- 1)LOCK_SH: 共享锁, 同一时间运行多个进程同时持有该共享锁;
- 2)LOCK_EX: 排它锁,只允许一个进程持有该锁;
- 3)LOCK_UN: 移除该进程的该文件所持有的锁。
从strace可以推测出:com.tencent.tim:MSF进程的监控线程执行排它锁LOCK_EX类型的flock,尝试去获取某个文件,而该文件已被com.tencent.tim: Daemon进程所持有,所以MSF进程会被阻塞知道锁的释放,而一旦Daemon进程被杀,系统就会回收所有资源(包括文件),这是Linux内核负责完成的。
当Daemon进程的文件被回收,就会释放flock, 从而MSF进程可以获取该锁,从而吐出“lock file success”的信息。 MSF得知Daemon进程被杀,然后执行一行ioctl(11, BINDER_WRITE_READ, 0xffffffffee823ed0) = 0 <0.000867> 。
这个应该就是TIM进程自身实现了一套执行startService的Binder调用,向Binder驱动发送 BINDER_WRITE_READ的ioctl命令。 再然后发送kill SIGKILL将自身MSF进程杀掉,同样的道理可以再次被拉起。
分析到这里,看执行了writev操作, 应该就是Log操作, 有一个关键词到 Watermelon 吸引了我的注意力, 搜索 Watermelon 关键词,果然找到新的一片天地。
6.4TIM日志
`//``旧的MSF进程`
`24538 24562 D Watermelon: lock` `file` `success >>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_p2`
`24538 24562 E Watermelon: Watch >>>>Daemon<<<<< Daed !!`
`24538 24562 E Watermelon: java_callback:onDaemonDead`
`24538 24562 V Watermelon: onDaemonDead`
`24576 24576 D Watermelon: lock` `file` `success >>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d1`
`24576 24576 E Watermelon: Watch >>>>Daemon<<<<< Daed !!`
`24576 24576 E Watermelon: process` `exit`
`//``新daemon进程`
`25103 25103 V Watermelon: initDaemon processName=com.tencent.tim:Daemon`
`25103 25103 E Watermelon: onDaemonAssistantCreate`
`25134 25134 D Watermelon: start daemon24=``/data/user/0/com``.tencent.tim``/app_bin/daemon2`
`//app_d``进程`
`25137 25137 D Watermelon: pipe` `read` `datasize >> 316 <<`
`25137 25137 D Watermelon: indicator_self_path >>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d1`
`25137 25137 D Watermelon: observer_daemon_path >>` `/data/user/0/com``.tencent.tim``/app_indicators/observer_p1`
`25137 25137 I Watermelon: sIActivityManager==NULL`
`25137 25137 I Watermelon: BpActivityManager init`
`//``新daemon`
`25103 25120 D Watermelon: start try to lock` `file` `>>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_p2`
`25103 25120 D Watermelon: lock` `file` `success >>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_p2`
`25137 25137 I Watermelon: BpActivityManager init end`
`//app_d``进程`
`25137 25137 D Watermelon: start try to lock` `file` `>>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d1`
`25137 25137 D Watermelon: lock` `file` `success >>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d1`
`//``新MSF进程`
`25119 25119 V Watermelon: initDaemon processName=com.tencent.tim:MSF`
`25119 25119 V Watermelon: mConfigurations.PERSISTENT_CONFIG.PROCESS_NAME=com.tencent.tim:MSF`
`25119 25119 E Watermelon: onPersistentCreate`
`25153 25153 D Watermelon: start daemon24=``/data/user/0/com``.tencent.tim``/app_bin/daemon2`
`25119 25144 D Watermelon: pipe write len=324`
`25159 25159 D Watermelon: pipe` `read` `datasize >> 324 <<`
`25159 25159 D Watermelon: indicator_self_path >>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_p1`
`25159 25159 D Watermelon: observer_daemon_path >>` `/data/user/0/com``.tencent.tim``/app_indicators/observer_d1`
`25159 25159 I Watermelon: sIActivityManager==NULL`
`25159 25159 I Watermelon: BpActivityManager init`
`25119 25144 D Watermelon: start try to lock` `file` `>>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d2`
`25119 25144 D Watermelon: lock` `file` `success >>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d2`
`25159 25159 I Watermelon: BpActivityManager init end`
`//``各进程进入监听就绪状态`
`25159 25159 D Watermelon: start try to lock` `file` `>>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_p1`
`25159 25159 D Watermelon: lock` `file` `success >>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_p1`
`25119 25144 E Watermelon: Watched >>>>OBSERVER<<<< has been ready...`
`25119 25144 D Watermelon: start try to lock` `file` `>>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_p2`
`25159 25159 E Watermelon: Watched >>>>OBSERVER<<<< has been ready...`
`25159 25159 D Watermelon: start try to lock` `file` `>>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d1`
`25137 25137 E Watermelon: Watched >>>>OBSERVER<<<< has been ready...`
`25137 25137 D Watermelon: start try to lock` `file` `>>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_p1`
`25103 25120 E Watermelon: Watched >>>>OBSERVER<<<< has been ready...`
`25103 25120 D Watermelon: start try to lock` `file` `>>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d2`
再从其中的截取核心片段:
`25159 25159 I Watermelon: BpActivityManager init`
`25119 25144 D Watermelon: start try to lock` `file` `>>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d2`
`25119 25144 D Watermelon: lock` `file` `success >>` `/data/user/0/com``.tencent.tim``/app_indicators/indicator_d2`
不难看出:
- 1)TIM自身通过向servicemanager查询来获取AMS的代理BpActivityManager, 然后自己去写startService通信过程的数据;
- 2)TIM通过两个进程通过flock来相互监听对方进程存活状态;
- 3)监听的文件有比如:/data/user/0/com.tencent.tim/app_indicators/indicator_d2。
6.5indicator文件
进一步查看TIM所监听的路径下/data/user/0/com.tencent.tim/app_indicators/, 发现有4个监听文件:
<ignore_js_op style="word-wrap: break-word;">
问题4:为何需要4个indicator文件?
进一步延伸:通过查看flock,再次发现新大陆,原来除了Daemon和MSF进程各有一个监听文件的线程, 还有两个由init进程作为父进程的app_d进程也监听文件:
`gityuan@13203:~``/gityuan``$ adb shell` `ps` `-t |` `grep` `-i flock`
`u0_a146 10668 10649 1143304 85876 flock_lock 00f6e1e3d8 S Thread-85`
`u0_a146 10712 10669 1158552 89664 flock_lock 00f6e1e3d8 S Thread-89`
`u0_a146 10687 1 12768 564 flock_lock 00f73113d8 S app_d`
`u0_a146 10717 1 12768 560 flock_lock 00f74353d8 S app_d`
不难发现,以上几个进程/线程的uid=10146,进一步通过ps命名查找。
再一次刷新对TIM应用的认识:原来TIM有6个进程,其中还有2个是挂在init进程下,名字跟tencent没有关系,差点错过了这两个特殊的进程。
史上最强Android保活思路:深入剖析腾讯TIM的进程永生技术这两个app_d进程其实也是做着同样的相互监听的工作, 应该是备选方案。当有概率恰巧Daemon和MSF进程同时被杀而来不及互保的情况下,那么可以走紧急通道app_d 将TIM进程拉起。可谓是暗藏玄机, 6个进程中有4个进程可以相互保活, 以保证TIM进程永生。
问题5: 这4个进程到达是什么如何相互监听的呢?
通过不断分析被杀与重启前后的规律与特征,得出进程与监听文件的关系图:
进一步揭露面纱,得到如下结论:
- 1)Daemon与MSF两进程等待对方所持有的锁,两个app_d进程相互等待对方所持有的锁;
- 2)app_d1进程被杀, 则app_d2观察后通过拉起DaemonMsfService服务来启动MSF进程,然后跟着被杀;
- 3)app_d2进程被杀,则app_d1观察后通过拉起DaemonAssistService服务来启动Daemon进程,然后跟着被杀;
- 4)Daemon与MSF两进程, 如果杀掉其中一个,则另个一个进程观察后通过拉起服务方式来启动对方进程,然后跟着被杀;然后app_d两个进程也跟着重启。
另外猜想:监测indicator_p1和indicator_p2的两个进程有关联,indicator_d1和indicator_d2的进程有关联,后面会验证。
到这里又有出现新的疑问:Daemon进程死后,MSF进程通过flock能监测到该事件,可是app_d进程又是如何得知的呢? app_d得知之后,又为何要再次自杀重启?
6.6从cgroup角度来分析
`root@gityuan:``/acct/uid_10146/pid_10649` `# cat cgroup.procs `
`10649` `//Daemon`
`10687` `//app_d`
`root@gityuan:``/acct/uid_10146/pid_10669` `# cat cgroup.procs `
`10669` `//MSF`
`10717` `//app_d`
从而,进一步获取更多关于TIM深层次的关联,通过查看cgroup发现,Daemon和app_d1是同一个group的, MSF和app_d2是同一个group的。
问题6: app_d到底是如何创建出来?又是如何成为init进程的子进程的?
从进程创建与退出的角度来看看来看:
`//` `5170(MSF进程) --> 5192 --> 5201(退出) --> 5211(存活)`
`tencent.tim:MSF-5170 [001] ...1 55659.446062: sched_process_fork:` `comm``=tencent.tim:MSF pid=5170 child_comm=tencent.tim:MSF child_pid=519`
`Thread-300-5192 [000] ...1 55659.489621: sched_process_fork:` `comm``=Thread-300 pid=5192 child_comm=Thread-300 child_pid=5201`
`<...>-5201 [003] ...1 55659.501074: sched_process_exec: filename=``/data/user/0/com``.tencent.tim``/app_bin/daemon2` `pid=5201 old_pid=5201`
`daemon2-5201 [009] ...1 55659.533492: sched_process_fork:` `comm``=daemon2 pid=5201 child_comm=daemon2 child_pid=5211`
`daemon2-5201 [009] ...1 55659.535169: sched_process_exit:` `comm``=daemon2 pid=5201 prio=120`
`daemon2-5201 [009] d..3 55659.535341: signal_generate: sig=17 errno=0 code=262145` `comm``=Thread-300 pid=5192 grp=1 res=1`
说明:其中一个app_d进程是由MSF进程,通过两次fork,然后父进程退出,从而成为了孤儿进程,然后托孤给init进程,这是Linux进程机制所保证的。 同理,另一个app_d进程是由Daemon进程所fork。到这里,那么总算是认清的app_d的由来。 app_d是由于cgroup关联所以可以得知Daemon进程的情况。 关于重启的原因是为了重新建立互动的关系。
问题7:为何单杀daemon,会牵连app_d进程被杀,这是什么原理?
解答:从杀进程的日志上来是调用killProcessGroup()杀进程,可事实上adb只调用kill -9 pid的方式,单杀一个进程,怎么就牵连了app_d进程。 这是由于当daemon进程被杀后,死亡回调会回来后,在binderDied()的过程执行了killProcessGroup()。
如果从Linux内核层面,研究过Binder死亡回调机制的童鞋,到这里还就会有想到一个新的疑问如下。
问题8:app_d是由daemon进程间接fork出来的, 会共享binder fd,所以即便daemon进程被杀,死亡回调也不会触发,这又是何触发的呢?
解答:由于app_d进程被fork后,马上执行了exec()系的函数, 而在ProcessState打开Binder驱动的时候, 有一个非常重要的flag, 那就是O_CLOEXEC。
采用O_CLOEXEC方式打开的问题,当新创建的进程调用exec()函数成功后,文件描述符会自动关闭, 代码如下:
6.7剖根问底
问题9:TIM到底对Binder框架做了什么级别的修改?这4个互保进程,既然callingPid=0,有没有办法知道到底是由谁拉起谁的?
前面既然说了,TIM强行修改了ONEWAY的方式。可以去掉该flags, 为了调试,这里就针对TIM,并且code=34(即START_SERVICE_TRANSACTION), 并且修改flag的case下:
从实验结果来看,通过修改IPCThreadState.cpp代码, 完成control住了 TIM的所有修改, 这里可以说明:
TIM分别在Java层和Native层,主动向ServiceManager进程查询AMS后,获取BpActivityManager代理对象,然后继续使用框架中的IPCThreadState跟Binder驱动交互,并没有替换掉libbinder.so。
其实,还可以更高级的玩法,连IPCThreadState这些框架通信代码也不使用, 彻底地去自定义Binder交互代码,类似于servicemanager的方式。可以自己封装ioctl(),直接talkWithDriver。TIM保活还有改进空间, 提供保活变种方案,这样的话,上面的调试代码也拦截不了其对flags修改为ONEWAY的过程。 即使如此,一切都在Control之中, 完全可以在Binder Driver中拦截再定位其策略, 玩得再高级也主要活动在用户态, 内核态的策略还是相对安全的, 此所谓“魔高一座,道高一尺”。
另外,通过增加上面的临时代码,再次多次实验对比,可以得出如下关系图:
二度fork是指前面介绍了,fork后再fork,然后托孤,无论如何跟最初的进程都属于同一个group,有着级联被杀关系。
- 1)杀掉Daemon进程,则MSF进程观察到会去拉起Daemon进程; 同时app_d1因为同一个group而被杀,则app_d2进程观察到也拉起Daemon进程,这就是双保险;
- 2)杀掉app_d1进程, 则app_d2进程观察到会拉起MSF进程;
- 3)直接force-stop进程, 则6个进程都会被杀,只是杀的过程并非所有进程同一时刻点被杀,而是有前后顺序,所以造成能自启。
6.8分析思路归纳
我们来回顾一下上面的过程:
- 1)先有了初步分析过程中对一些常规套路的可能性的排除,并嗅到callingPid=0的异常举动;
- 2)沿着蛛丝马迹,不断反复尝试杀进程,从中寻找更多的规律,不断地向自己提出疑问;
- 3)结合signal,strace, traces,ps,binder,linux,kill等技能 不断地解答自己的疑惑。
解系统层的问题,更像是侦探破案的感觉,要有敏锐的嗅觉,抓住蛛丝马迹,加上”大胆猜想,小心验证“ , 终究能找到案件的真相。 此所谓”点动成线,线动成面,面动成体“, 从零星的点滴勾画出全方面立体化的真相。
归纳下,主要提出过这些疑惑:
- 问题1:安全中心已配置了禁止TIM的自启动, 并且安全中心和Whetstone都有对进程自启动以及级联启动的严格限制, 为何会有漏网之鱼?
- 问题2:startService()的callingPid怎么可能等于0?
- 问题3:进程内的名叫“Thread-89”的线程具有什么特点,如何做到把进程杀掉?
- 问题4:为何需要4个indicator文件?
- 问题5: 这4个进程到达是什么如何相互监听的呢?
- 问题6: app_d到底是如何创建出来?又是如何成为init进程的子进程的?
- 问题7:为何单杀daemon,会牵连app_d进程被杀,这是什么原理?
- 问题8:app_d是由daemon进程间接fork出来的, 会共享binder fd,所以即便daemon进程被杀,死亡回调也不会触发,这又是何触发的呢?
- 问题9:TIM到底对Binder框架做了什么级别的修改?这4个互保进程,既然callingPid=0,有没有办法知道到底是由谁拉起谁的?
7、本文总结
总结一下TIM的保活技术要点,我们可以得出以下经验:
- 1)通过flock的文件排它锁方式来监听进程存活状态
1.1)先采用一对普通的进程Daemon和MSF相互监听文件的方式来获得对方进程是否存活的状态;
1.2)同时再采用一对退孤给init进程的app_d进程相互监听文件的方式来获得对方进程是否存活的状态; 而这两个进程都有间接由Daemon和MSF进程所fork而来;双重保险。 - 2)不采用系统框架中startService的Binder框架代码,而是自身在Native层通过自己去查询获取BpActivityManager代理对象, 然后自己实现startService接口,并修改为ONEWAY的binder调用,既增加分析问题的难度,也进一步隐藏自身策略;
- 3)当监听进程死亡,则通过自身实现的StartService的Binder call去拉起对方进程,系统对于这种方式启动进程并没有拦截机制。
这种flock的方式至少比网上常说的通过循环监听的方式,要强很多。
比往常的互保更厉害的是TIM共有6个进程(说明:使用过程也还会创建一些进程),其中4个进程,形成两组互动进程,其中一组利用Linux进程托孤原理,可谓是隐藏得很深来互保,进一步确保进程永生。
当然,进程收到signal信号后,如果恰巧这四个进程在同一个时刻点退出,那么还是有概率会被杀。
不走系统框架代码,自己去实现启动服务的binder call也是一大亮点,不过还有更高级的玩法,直接封装ioctl跟驱动交互。之前针对这个问题,做过反保活方案,后来为了某些功能缘故又放开对这个的限制,这里就不再继续展开了。
原文链接:http://www.52im.net/thread-2893-1-1.html
网友评论