Day85 搜索二维矩阵 II

作者: Shimmer_ | 来源:发表于2021-04-22 22:38 被阅读0次

    编写一个高效的算法来搜索 m x n 矩阵 matrix 中的一个目标值 target 。该矩阵具有以下特性:

    示例1:

    1, 4, 7, 11, 15
    2, 5, 8, 12, 19
    3, 6, 9, 16, 22
    10, 13, 14, 17, 24
    18, 21, 23, 26, 30
    

    输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 5
    输出:true

    示例2:

    1,4,7,11,15
    2,5,8,12,19
    3,6,9,16,22
    10,13,14,17,24
    18,21,23,26,30
    

    输入:matrix = [[1,4,7,11,15],[2,5,8,12,19],[3,6,9,16,22],[10,13,14,17,24],[18,21,23,26,30]], target = 20
    输出:false

    提示:

    m == matrix.length
    n == matrix[i].length
    1 <= n, m <= 300
    -109 <= matix[i][j] <= 109
    每行的所有元素从左到右升序排列
    每列的所有元素从上到下升序排列
    -109 <= target <= 109

    Java解法

    思路:

    • 看题目比较简单,因为矩阵左右上下都有序,找出目标值是否存在,很容易想到二分查找定位边界
      • 先通过二分查找找到可能存在的y列(当前列最接近小于target的列)
      • 再在该列找到目标值
        踩坑,Y列有序不是强关联因为矩阵是左顶角到右底角有序增大,可以考虑同时二分查找X,Y当X=Y时是当前xy矩形最大的数,当前x-1,y-1 小于target x,y大于target时,那target必在x,y右、下底边上在用二分查找 对这两边进行查找
    • 又陷入死角了,参考官方解:采用 最简单的方式,对每行每列进行二分查找:比较低效率的写法
    package sj.shimmer.algorithm.m4_2021;
    
    /**
     * Created by SJ on 2021/4/22.
     */
    
    class D85 {
        public static void main(String[] args) {
            int[][] matrix = {
                    {1, 4, 7, 11, 15},
                    {2, 5, 8, 12, 19},
                    {3, 6, 9, 16, 22},
                    {10, 13, 14, 17, 24},
                    {18, 21, 23, 26, 30},
            };
    
            int[][] matrix2 = {
                    {1, 2, 3, 4, 5},
                    {6, 7, 8, 9, 10},
                    {11, 12, 13, 14, 15},
                    {16, 17, 18, 19, 20},
                    {21, 22, 23, 24, 25},
            };
            int[][] matrix3 = {
                    {1, 4, 7, 11, 15},
                    {2, 5, 8, 12, 19},
                    {3, 6, 9, 16, 22},
                    {10, 13, 14, 17, 24},
                    {18, 21, 23, 26, 30},
            };
            int[][] matrix4 = {
                    {1, 3, 5},
            };
            int[][] matrix5 = {
                    {1, 4},
                    {2, 5},
            };
            int[][] matrix6 = {
                    {-1, 3},
            };
    //        System.out.println(searchMatrix(matrix, 5));
    //        System.out.println(searchMatrix(matrix, 20));
    //        System.out.println(searchMatrix(matrix, 30));
    //        System.out.println(searchMatrix(matrix2, 19));
    //        System.out.println(searchMatrix(matrix3, 5));
    //        System.out.println(searchMatrix(matrix4, 1));
    //        System.out.println(searchMatrix(matrix5, 2));
    //        System.out.println(searchMatrix(matrix6, 3));
            System.out.println(searchMatrix(matrix2, 15));
        }
    
        private static boolean binarySearch(int[][] matrix, int target, int start, boolean vertical) {
            int lo = start;
            int hi = vertical ? matrix[0].length - 1 : matrix.length - 1;
    
            while (hi >= lo) {
                int mid = (lo + hi) / 2;
                if (vertical) { // searching a column
                    if (matrix[start][mid] < target) {
                        lo = mid + 1;
                    } else if (matrix[start][mid] > target) {
                        hi = mid - 1;
                    } else {
                        return true;
                    }
                } else { // searching a row
                    if (matrix[mid][start] < target) {
                        lo = mid + 1;
                    } else if (matrix[mid][start] > target) {
                        hi = mid - 1;
                    } else {
                        return true;
                    }
                }
            }
    
            return false;
        }
    
        public static boolean searchMatrix(int[][] matrix, int target) {
            // an empty matrix obviously does not contain `target`
            if (matrix == null || matrix.length == 0) {
                return false;
            }
    
            // iterate over matrix diagonals
            int shorterDim = Math.min(matrix.length, matrix[0].length);
            for (int i = 0; i < shorterDim; i++) {
                boolean verticalFound = binarySearch(matrix, target, i, true);
                boolean horizontalFound = binarySearch(matrix, target, i, false);
                if (verticalFound || horizontalFound) {
                    return true;
                }
            }
            return false;
        }
        //忽略了 对位数据无有序关系
        public static boolean searchMatrix2(int[][] matrix, int target) {
            if (matrix == null || matrix.length == 0) {
                return false;
            }
            int yLen = matrix.length - 1;
            int xLen = matrix[0].length - 1;
            //通过二分查找定位可能存在的位置
            int startX = 0;
            int endX = xLen;
            int startY = 0;
            int endY = yLen;
            int x = -1;
            int y = -1;
            while (startX <= endX && startY <= endY) {
                //找到可能存在的Y
                int midX = (startX + endX) / 2;
                int midY = (startY + endY) / 2;
                if (matrix[midY][midX] == target) {
                    return true;
                } else if (matrix[midY][midX] < target) {
                    if (midX < endX && midY < endY) {
                        //可增大
                        if (matrix[midY + 1][midX + 1] > target) {//找到
                            for (int i = midX; i >= 0; i--) {
                                if (matrix[midY + 1][i] == target) {
                                    return true;
                                }
                            }
                            for (int i = midY; i >= 0; i--) {
                                if (matrix[i][midX + 1] == target) {
                                    return true;
                                }
                            }
                            return false;
                        } else if (matrix[midY + 1][midX + 1] == target) {
                            return true;
                        } else {
                            //往后找
                            startX = midX + 1;
                            startY = midY + 1;
                        }
                    } else if (midX < endX) {
                        if (matrix[midY][midX + 1] > target) {//找到
                            for (int i = midY; i >= 0; i--) {
                                if (matrix[i][midX + 1] == target) {
                                    return true;
                                }
                            }
                            return false;
                        } else if (matrix[midY][midX + 1] == target) {
                            return true;
                        } else {
                            //往后找
                            startX = midX + 1;
                        }
                    } else if (midY < endY) {
                        //可增大
                        if (matrix[midY + 1][midX] >= target) {//找到
                            for (int i = midX; i > 0; i--) {
                                if (matrix[midY + 1][i] == target) {
                                    return true;
                                }
                            }
                            return false;
                        } else if (matrix[midY + 1][midX] == target) {
                            return true;
                        } else {
                            //往后找
                            startY = midY + 1;
                        }
                    } else {
                        return false;
                    }
                } else {
                    if (midX == 0 && midY == 0) {
                        return false;
                    }
                    endX = midX;
                    endY = midY;
                }
            }
            return false;
        }
    }
    
    image

    官方解

    https://leetcode-cn.com/problems/search-a-2d-matrix-ii/solution/sou-suo-er-wei-ju-zhen-ii-by-leetcode-2/

    1. 依次遍历及依次二分遍历

      比较低下的效率

    2. 指针移位

      指针指向左下角元素,根据target的比较进行移动 直到找到或越界

      这是我想达到的效果,但是因为一直考虑到矩阵过大的问题,想通过二分查找提供效率,导致不能完成

    相关文章

      网友评论

        本文标题:Day85 搜索二维矩阵 II

        本文链接:https://www.haomeiwen.com/subject/drkqrltx.html