#########
CUDA (NVIDIA GPU) on a Centos7 安装步骤
#########
1.安装anaconda
https://www.anaconda.com/download/#linux
wget 下载地址
bash XXX
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --set show_channel_urls yes
conda install caffe
conda install keras
pip install tensorflow-gpu jieba gensim
yum -y install lrzsz
pip install numpy
pip install Cython
pip install scipy
配置juypter
jupyter notebook --generate-config --allow-root
cd ~/.jupyter/
vim jupyter_notebook_config.py
c.NotebookApp.ip='*'
c.NotebookApp.open_browser = False
c.NotebookApp.port =8888#随便指定一个端口
c.NotebookApp.notebook_dir='/data/path'#设置根路径
cd /data
jupyter notebook --allow-root
拷贝地址浏览器里打开,新建py2文件,输入
from notebook.auth import passwd
passwd()
生成密码后继续修改配置文件
c.NotebookApp.password = u'sha:ce...刚才复制的那个密文'
修改后重启
nohup jupyter notebook --allow-root &
#########
2.CUDA
#########
2.1 disable selinux
sed -i 's/enforcing/disabled/g' /etc/selinux/config /etc/selinux/config
2.2 then reboot
shutdown -r now
2.3 disable postfix
systemctl stop postfix
systemctl disable postfix
2.4 enable swap
/bin/dd if=/dev/zero of=/var/swap.1 bs=1M count=1024
/sbin/mkswap /var/swap.1
/sbin/swapon /var/swap.1
2.5 library dependencies
yum -y install lapack-devel gcc-c++ kernel-devel libjpeg-turbo-devel zlib-devel pciutils git python-virtualenv lrzsz
yum -y update
2.6 get epel
cd /var/tmp
curl -O https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm
yum -y install ./epel-release-latest-7.noarch.rpm
2.9 更新驱动程序
访问 http://www.geforce.cn/drivers/results/123918 点击下载
获取最新的下载地址 wget 下载
bash XXXX.run
2.10 下载cuda for centos 7 下面一步不要了
cuda 版本要和驱动版本保持一致 尽量下8.0左右的版本
http://developer.download.nvidia.com/compute/cuda/repos/rhel7/x86_64/
https://developer.nvidia.com/cuda-downloads
选择 linux x86_64 centos7 rmp(network) 获取下载地址 wget
rpm -i xxx.x86_64.rpm
yum clean all
yum install cuda
目前先过掉这一步,7.5有点太老了 get cuda RPM of rpms for centos 7
(must be done on GPU enabled host)
cd /var/tmp
curl -O http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-rhel7-7-5-local-7.5-18.x86_64.rpm
yum -y install ./cuda-repo-rhel7-7-5-local-7.5-18.x86_64.rpm
yum -y install cuda
cd /usr/local/cuda-7.5/samples/1_Utilities/deviceQuery
make
cp -p deviceQuery /root
2.12 install python-virtualenv
yum -y install python-virtualenv
2.13 create venv
cd /root
virtualenv deepenv
activate deepenv (within script?)
install pip pkgs
install cudarray (cuda enabled numpy)
cd /root
git clone https://github.com/andersbll/cudarray
cd cudarray
make
make install
python setup.py install
yum -y install libjpeg-turbo-devel
cd /root
git clone https://github.com/andersbll/deeppy
cd deeppy
python setup.py install
下载keras example
git clone https://github.com/keras-team/keras.git
python ./keras/example/mnist_cnn.py
报错 kernel version 384.66.0 does not match DSO version 387.26.0
其他方法
检查是否安装了GPU:
lspci | grep -i nvidia
检查GPU版本
lspci | grep -v vga
检查系统版本
uname -m && cat /etc/*release
检查gcc版本
gcc --version
检查是否正确安装kernel headers
yum install kernel-devel-(uname -r) kernel-headers-(uname -r)
查看驱动版本
cat /proc/driver/nvidia/version
网友评论