对象中如果包含float或double类型的属性的读取方式
double类型无法po@2x.png@interface DCPerson : NSObject
@property(nonatomic,copy)NSString *name;
@property(nonatomic,copy)NSString *nickName;
@property(nonatomic,copy)NSString *hobby;
@property(nonatomic,assign)int age;
@property(nonatomic,assign)float height;
@property(nonatomic,assign)char c1;
@property(nonatomic,assign)char c2;
@end
(lldb) po p1
<DCPerson: 0x100674390>
(lldb) x/8gx 0x100674390
0x100674390: 0x001d800100003545 0x0000001200006261
0x1006743a0: 0x0000000043340000 0x0000000100002018
0x1006743b0: 0x0000000100002038 0x0000000100002058
0x1006743c0: 0x0000000000000000 0x0000000000000000
(lldb) po 0x001d800100003545
8303516107945285
(lldb) p 0x001d800100003545
(long) $2 = 8303516107945285
(lldb) po 0x0000001200006261
14305649625132105900
(lldb) po 0x0000000043340000
1127481344
(lldb) po 0x0000000100002018
Cloud
(lldb) po 0x0000000100002018
Cloud
(lldb) po 0x0000000100002058
女
(lldb) po 0x0000000100002038
fish
(lldb) x/f (float)1180
error: memory read failed for 0x400
(lldb) p/x (float)180
(float) $10 = 0x43340000
(lldb) p/x (double)180
(double) $11 = 0x4066800000000000
(lldb)
通过代码转换类型
void lg_float2HEX(float f){
union uuf{float f;char s[4];} uf;
uf.f = f;
printf("0x");
for (int i=3; i>=0; i--) {
printf("%02x",0xff & uf.s[i]);
}
printf("\n");
}
void lg_double2HEX(double d){
union uud {double d; char s[8];} ud;
ud.d = d;
printf("0x");
for (int i = 7; i>=0; i--) {
printf("%02x",0xff & ud.s[i]);
}
printf("\n");
}
int main(int argc, const char * argv[]) {
@autoreleasepool {
lg_float2HEX(190.5);
lg_double2HEX(180.5);
DCPerson *p1 = [DCPerson alloc];
p1.name = @"Cloud";
p1.nickName = @"fish";
p1.hobby = @"女";
p1.age = 18;
p1.height = 190.5;
p1.measurements = 180.5;
p1.c1 = 'a';
p1.c2 = 'b';
DCNSLog(@"%@ - %p - %p",p1,p1,&p1);
}
//输出
0x433e8000
0x4066900000000000
DCPerson was compiled with optimization - stepping may behave oddly; variables may not be available.
(lldb) po p1
<DCPerson: 0x101020fe0>
(lldb) x/8gx 0x101020fe0
0x101020fe0: 0x001d8001000035b5 0x0000001200006261
0x101020ff0: 0x00000000433e8000 0x0000000100002018
0x101021000: 0x0000000100002038 0x0000000100002058
0x101021010: 0x4066900000000000 0x0000000000000000
float和double类型转十六进制@2x.png
对象的本质
Clang是一个由Apple主导编写,基于LLVM的C/C++/Objective-C编译器,clang -rewrite-objc main.m -o main.cpp 把目标文件编译成c++文件
clang编译@2x.pngclang得到cpp文件@2x.png
QQ20201002-193323@2x.png
加上name属性之后重新编译得到:对象的本质是结构体
#ifndef _REWRITER_typedef_DCPerson
#define _REWRITER_typedef_DCPerson
typedef struct objc_object DCPerson;
typedef struct {} _objc_exc_DCPerson;
#endif
extern "C" unsigned long OBJC_IVAR_$_DCPerson$_name;
struct DCPerson_IMPL {
struct NSObject_IMPL NSObject_IVARS;//isa
NSString *_name;//成员变量
};
getter方法和setter方法
static NSString * _I_DCPerson_name(DCPerson * self, SEL _cmd) { return (*(NSString **)((char *)self + OBJC_IVAR_$_DCPerson$_name)); }
extern "C" __declspec(dllimport) void objc_setProperty (id, SEL, long, id, bool, bool);
static void _I_DCPerson_setName_(DCPerson * self, SEL _cmd, NSString *name) { objc_setProperty (self, _cmd, __OFFSETOFIVAR__(struct DCPerson, _name), (id)name, 0, 1); }
通用setter方法
void objc_setProperty(id self, SEL _cmd, ptrdiff_t offset, id newValue, BOOL atomic, signed char shouldCopy)
{
bool copy = (shouldCopy && shouldCopy != MUTABLE_COPY);
bool mutableCopy = (shouldCopy == MUTABLE_COPY);
reallySetProperty(self, _cmd, newValue, offset, atomic, copy, mutableCopy);
}
对新值的retain,对旧值的release
static inline void reallySetProperty(id self, SEL _cmd, id newValue, ptrdiff_t offset, bool atomic, bool copy, bool mutableCopy)
{
if (offset == 0) {
object_setClass(self, newValue);
return;
}
id oldValue;
id *slot = (id*) ((char*)self + offset);
if (copy) {
newValue = [newValue copyWithZone:nil];
} else if (mutableCopy) {
newValue = [newValue mutableCopyWithZone:nil];
} else {
if (*slot == newValue) return;
newValue = objc_retain(newValue);
}
if (!atomic) {
oldValue = *slot;
*slot = newValue;
} else {
spinlock_t& slotlock = PropertyLocks[slot];
slotlock.lock();
oldValue = *slot;
*slot = newValue;
slotlock.unlock();
}
objc_release(oldValue);
}
联合体(共用体)位域
结构体变量所占内存长度是各成员占的内存长度之和。每个成员分别占有其自己的内存单元。而共用体变量所占的内存长度等于最长的成员的长度。
共用体.png
这儿按照浮点数输出为什么是0.000000呢,浮点数的二进制存储方式如下:
float和double在存储方式上都是遵从IEEE的规范的,float遵从的是IEEE R32.24 ,而double 遵从的是R64.53。
无论是单精度还是双精度在存储中都分为三个部分:
符号位(Sign) : 0代表正,1代表为负
指数位(Exponent):用于存储科学计数法中的指数数据,并且采用移位存储
尾数部分(Mantissa):尾数部分
将一个float型转化为内存存储格式的步骤为:
(1)先将这个实数的绝对值化为二进制格式。
(2)将这个二进制格式实数的小数点左移或右移n位,直到小数点移动到第一个有效数字的右边。
(3)从小数点右边第一位开始数出二十三位数字放入第22到第0位。
(4)如果实数是正的,则在第31位放入“0”,否则放入“1”。
(5)如果n 是左移得到的,说明指数是正的,第30位放入“1”。如果n是右移得到的或n=0,则第30位放入“0”。
(6)如果n是左移得到的,则将n减去1后化为二进制,并在左边加“0”补足七位,放入第29到第23位。
如果n是右移得到的或n=0,则将n化为二进制后在左边加“0”补足七位,再各位求反,再放入第29到第23位。
R32.24和R64.53的存储方式都是用科学计数法来存储数据的,比如8.25用十进制的科学计数法表示就为:8.2510^0,而120.5可以表示为:1.205102,计算机根本不认识十进制的数据,他只认识0,1,所以在计算机存储中,首先要将上面的数更改为二进制的科学计数法表示,8.25用二进制表示可表示为1000.01,120.5用二进制表示为:1111000.1用二进制的科学计数法表示1.1110001*26,1000.01可以表示为1.00012^3,任何一个数都的科学计数法表示都为1.xxx2^x,尾数部分就可以表示为xxxx,第一位都是1嘛,干嘛还要表示呀?可以将小数点前面的1省略,所以23bit的尾数部分,可以表示的精度却变成了24bit,道理就是在这里,那24bit能精确到小数点后几位呢,我们知道9的二进制表示为1001,所以4bit能精确十进制中的1位小数点,24bit就能使float能精确到小数点后6位,而对于指数部分,因为指数可正可负,8位的指数位能表示的指数范围就应该为:-127-128了,所以指数部分的存储采用移位存储,存储的数据为元数据+127,下面就看看8.25和120.5在内存中真正的存储方式。
按照上面的存储方式,符号位为:0,表示为正,指数位为:3+127=130 ,位数部分为,故8.25的存储方式如下图所示:
1006828-20161219191553385-1603336307.png而单精度浮点数120.5的存储方式如下图所示:这儿120.5的二进制表示应该是1.1110001*2^6
1006828-20161219191633869-470721450.png
将一个内存存储的float二进制格式转化为十进制的步骤:
(1)将第22位到第0位的二进制数写出来,在最左边补一位“1”,得到二十四位有效数字。将小数点点在最左边那个“1”的右边。
(2)取出第29到第23位所表示的值n。当30位是“0”时将n各位求反。当30位是“1”时将n增1。
(3)将小数点左移n位(当30位是“0”时)或右移n位(当30位是“1”时),得到一个二进制表示的实数。
(4)将这个二进制实数化为十进制,并根据第31位是“0”还是“1”加上正号或负号即可。
大部分自定义的类都为nonpoint_isa,8字节64位存满了信息
# if __arm64__
# define ISA_MASK 0x0000000ffffffff8ULL
# define ISA_MAGIC_MASK 0x000003f000000001ULL
# define ISA_MAGIC_VALUE 0x000001a000000001ULL
# define ISA_BITFIELD
: 1;
uintptr_t nonpointer
uintptr_t has_assoc
uintptr_t has_cxx_dtor
uintptr_t shiftcls : 33; uintptr_t magic : 6; uintptr_t weakly_referenced : 1; uintptr_t deallocating : 1; uintptr_t has_sidetable_rc : 1; uintptr_t extra_rc : 19
# define RC_ONE (1ULL<<45)
# define RC_HALF (1ULL<<18)
结构体(struct)中所有变量是“共存”的——优点是“有容乃大”, 全面;缺点是struct内存空间的分配是粗放的,不管用不用,全分配。
联合体(union)中是各变量是“互斥”的——缺点就是不够“包容”; 但优点是内存使
用更为精细灵活,也节省了内存空间
nonpointer:表示是否对 isa 指针开启指针优化 0:纯isa指针,1:不止是类对象地址,isa 中包含了类信息、对象的引用计数等
has_assoc:关联对象标志位,0没有,1存在
has_cxx_dtor:该对象是否有 C++ 或者 Objc 的析构器,如果有析构函数,则需要做析构逻辑, 如果没有,则可以更快的释放对象
magic:用于调试器判断当前对象是真的对象还是没有初始化的空间 weakly_referenced:志对象是否被指向或者曾经指向一个 ARC 的弱变量,
没有弱引用的对象可以更快释放。
deallocating:标志对象是否正在释放内存
has_sidetable_rc:当对象引用技术大于 10 时,则需要借用该变量存储进位
extra_rc:当表示该对象的引用计数值,实际上是引用计数值减 1, 例如,如果对象的引用计数为 10,那么 extra_rc 为 9。如果引用计数大于 10, 则需要使用到下面的 has_sidetable_rc。
isa初始化
inline void
objc_object::initIsa(Class cls, bool nonpointer, bool hasCxxDtor)
{
ASSERT(!isTaggedPointer());
if (!nonpointer) {
isa = isa_t((uintptr_t)cls);
} else {
ASSERT(!DisableNonpointerIsa);
ASSERT(!cls->instancesRequireRawIsa());
isa_t newisa(0);
#if SUPPORT_INDEXED_ISA
ASSERT(cls->classArrayIndex() > 0);
newisa.bits = ISA_INDEX_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.indexcls = (uintptr_t)cls->classArrayIndex();
#else
newisa.bits = ISA_MAGIC_VALUE;
// isa.magic is part of ISA_MAGIC_VALUE
// isa.nonpointer is part of ISA_MAGIC_VALUE
newisa.has_cxx_dtor = hasCxxDtor;
newisa.shiftcls = (uintptr_t)cls >> 3;
#endif
// This write must be performed in a single store in some cases
// (for example when realizing a class because other threads
// may simultaneously try to use the class).
// fixme use atomics here to guarantee single-store and to
// guarantee memory order w.r.t. the class index table
// ...but not too atomic because we don't want to hurt instantiation
isa = newisa;
}
}
(lldb) p newisa
(isa_t) $1 = {
cls = nil
bits = 0
= {
nonpointer = 0
has_assoc = 0
has_cxx_dtor = 0
shiftcls = 0
magic = 0
weakly_referenced = 0
deallocating = 0
has_sidetable_rc = 0
extra_rc = 0
}
}
isa赋值@2x.png
(lldb) p newisa
(isa_t) $5 = {
cls = DCPerson
bits = 8303516107940113
= {
nonpointer = 1
has_assoc = 0
has_cxx_dtor = 0
shiftcls = 536871970
magic = 59
weakly_referenced = 0
deallocating = 0
has_sidetable_rc = 0
extra_rc = 0
}
}
magic从第47位开始到第52位共6位,数字分别为111011,十进制位59
# elif __x86_64__
# define ISA_MASK 0x00007ffffffffff8ULL
# define ISA_MAGIC_MASK 0x001f800000000001ULL
# define ISA_MAGIC_VALUE 0x001d800000000001ULL
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t has_cxx_dtor : 1; \
uintptr_t shiftcls : 44; /*MACH_VM_MAX_ADDRESS 0x7fffffe00000*/ \
uintptr_t magic : 6; \
uintptr_t weakly_referenced : 1; \
uintptr_t deallocating : 1; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 8
# define RC_ONE (1ULL<<56)
# define RC_HALF (1ULL<<7)
7.gif
isa指针和类关联起来
shiftcls怎么关联isa(DCPerson),(uintptr_t)cls右移三位,newisa.shiftcls = (uintptr_t)cls >> 3;
(lldb) po (uintptr_t)cls
DCPerson
(lldb) p (uintptr_t)cls
(uintptr_t) $7 = 4294975760
(lldb) p newisa
(isa_t) $8 = {
cls = DCPerson
bits = 8303516107940113
= {
nonpointer = 1
has_assoc = 0
has_cxx_dtor = 0
shiftcls = 536871970
magic = 59
weakly_referenced = 0
deallocating = 0
has_sidetable_rc = 0
extra_rc = 0
}
}
(lldb) p (uintptr_t)cls >> 3
(uintptr_t) $9 = 536871970
shiftcls@2x.png
isa关联指针和当前类
打印obj的对象,打印出isa指针
(lldb) po obj
<DCPerson: 0x10074ca50>
(lldb) x/4gx 0x10074ca50
0x10074ca50: 0x001d800100002111 0x0000000000000000
0x10074ca60: 0x75736956534e5b2d 0x6369506261546c61
(lldb) po 0x001d800100002111
-1004303003905715
(lldb) p 0x001d800100002111
(long) $12 = 8303516107940113
(lldb) p 0x001d800100002111 & 0x00007ffffffffff8ULL
(unsigned long long) $13 = 4294975760
(lldb) po 0x001d800100002111 & 0x00007ffffffffff8ULL
DCPerson
相当于通过object_getClass进去赋值
Class object_getClass(id obj)
{
if (obj) return obj->getIsa();
else return Nil;
}
inline Class
objc_object::getIsa()
{
if (fastpath(!isTaggedPointer())) return ISA();
extern objc_class OBJC_CLASS_$___NSUnrecognizedTaggedPointer;
uintptr_t slot, ptr = (uintptr_t)this;
Class cls;
slot = (ptr >> _OBJC_TAG_SLOT_SHIFT) & _OBJC_TAG_SLOT_MASK;
cls = objc_tag_classes[slot];
if (slowpath(cls == (Class)&OBJC_CLASS_$___NSUnrecognizedTaggedPointer)) {
slot = (ptr >> _OBJC_TAG_EXT_SLOT_SHIFT) & _OBJC_TAG_EXT_SLOT_MASK;
cls = objc_tag_ext_classes[slot];
}
return cls;
}
inline Class
objc_object::ISA()
{
ASSERT(!isTaggedPointer());
#if SUPPORT_INDEXED_ISA
if (isa.nonpointer) {
uintptr_t slot = isa.indexcls;
return classForIndex((unsigned)slot);
}
return (Class)isa.bits;
#else
return (Class)(isa.bits & ISA_MASK);
#endif
}
(Class)(isa.bits & ISA_MASK);
# define ISA_MASK 0x00007ffffffffff8ULL
isa关联类左移右移算法
针对x86和64架构的Mac(若为arm64的真机架构中间为33位),中间的44位代表类信息,通过右移三位抹掉后三位,再左移20位抹掉前面17位,之后右移17位得到44位类信息的原来的值,和直接获取类DCPerson的内存地址的值一模一样。
# elif __x86_64__
# define ISA_MASK 0x00007ffffffffff8ULL
# define ISA_MAGIC_MASK 0x001f800000000001ULL
# define ISA_MAGIC_VALUE 0x001d800000000001ULL
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t has_cxx_dtor : 1; \
uintptr_t shiftcls : 44; /*MACH_VM_MAX_ADDRESS 0x7fffffe00000*/ \
uintptr_t magic : 6; \
uintptr_t weakly_referenced : 1; \
uintptr_t deallocating : 1; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 8
# define RC_ONE (1ULL<<56)
# define RC_HALF (1ULL<<7)
# if __arm64__
# define ISA_MASK 0x0000000ffffffff8ULL
# define ISA_MAGIC_MASK 0x000003f000000001ULL
# define ISA_MAGIC_VALUE 0x000001a000000001ULL
# define ISA_BITFIELD \
uintptr_t nonpointer : 1; \
uintptr_t has_assoc : 1; \
uintptr_t has_cxx_dtor : 1; \
uintptr_t shiftcls : 33; /*MACH_VM_MAX_ADDRESS 0x1000000000*/ \
uintptr_t magic : 6; \
uintptr_t weakly_referenced : 1; \
uintptr_t deallocating : 1; \
uintptr_t has_sidetable_rc : 1; \
uintptr_t extra_rc : 19
# define RC_ONE (1ULL<<45)
# define RC_HALF (1ULL<<18)
isa关联类左移右移的值@2x.png
(lldb) x/4gx obj
0x10074ca50: 0x001d800100002111 0x0000000000000000
0x10074ca60: 0x75736956534e5b2d 0x6369506261546c61
(lldb) p/x 0x001d800100002111 >> 3
(long) $20 = 0x0003b00020000422
(lldb) p/x 0x0003b00020000422 << 20
(long) $21 = 0x0002000042200000
(lldb) p/x 0x0002000042200000 >> 17
(long) $22 = 0x0000000100002110
(lldb) p/x cls
(Class) $23 = 0x0000000100002110 DCPerson
(lldb) 两个值相等
网友评论