机器学习笔记 第3课:参数算法和非参数算法

作者: 首席IT民工 | 来源:发表于2018-10-02 09:20 被阅读8次

什么是参数机器学习算法?它与非参数机器学习算法有何不同?

“假设”通常会大大简化学习过程,但也会限制学到的东西。将函数简化为已知形式的算法,称为参数机器学习算法。

它包括两个步骤:

选择函数的形式。

从训练数据中学习该函数的系数。

常见的参数机器学习算法是线性回归逻辑回归

相反地,不对映射函数的形式做出有力假设的算法,称为非参数机器学习算法。通过不作出任何假设,它可以自由地从训练数据中学习任何形式的函数。

非参数方法通常更灵活,实现了更高的准确性,但需要更多的数据和训练时间。

常见的非参数算法包括支持向量机神经网络决策树

下一课中我们谈谈方差、偏差和两者间的权衡。

相关文章

  • 机器学习4:局部加权回归

    参数学习算法,非参数学习算法 参数学习算法,用固定的明确的参数进行数据的拟合。比如线性回归。非参数学习算法,使用的...

  • 机器学习笔记 第3课:参数算法和非参数算法

    什么是参数机器学习算法?它与非参数机器学习算法有何不同? “假设”通常会大大简化学习过程,但也会限制学到的东西。将...

  • 超参数

    超参数:在我们运行机器学习算法之前,需要指定的参数。模型参数:算法过程中学习的参数。 kNN算法没有模型参数kNN...

  • 2019-06-27-4.5 超参数

    4.5 超参数 超参数就是指在运行机器学习算法之前,需要指定的参数。 模型参数:算法过程中学习的参数。 KNN算法...

  • 4.5 超参数

    4.5 超参数 超参数就是指在运行机器学习算法之前,需要指定的参数。 模型参数:算法过程中学习的参数。 KNN算法...

  • 深度学习讲稿(6)

    2.5 参数学习和非参数学习 简化表述:试错学习 VS. 计数和概率。前面谈的内容将所有的机器学习算法分成两组:有...

  • Hyper-Parameters

    (笔记)超参数:在算法运行前需要决定的参数模型参数:算法过程中学习的参数 输出结果:0.9888888888888...

  • k近邻算法(kNN)

    1. 前言 k-邻近算法(kNN)是机器学习中非常简洁并且易于掌握的算法,是一种用于分类和回归的非参数统计算法。 ...

  • 2016-05-18~21:资料

    NumPy图文入门 一个机器学习博客 TensorFlow创建自己的手写识别引擎 随机非参数学习算法1 & 随机非...

  • 第七节超参数

    超参数:在算法运行前需要决定的参数;模型参数:算法过程中学习的参数。KNN算法没有模型参数;KNN算法中的k是典型...

网友评论

    本文标题:机器学习笔记 第3课:参数算法和非参数算法

    本文链接:https://www.haomeiwen.com/subject/ekvooftx.html