16.Spark Streaming源码解读之数据清理机制解析

作者: 飞帅记忆 | 来源:发表于2016-07-01 15:27 被阅读442次

    本期内容:
    一、Spark Streaming 数据清理总览
    二、****Spark Streaming ****数据清理过程详解
    三、****Spark Streaming ****数据清理的触发机制


    Spark Streaming不像普通Spark 的应用程序,普通Spark程序运行完成后,中间数据会随着SparkContext的关闭而被销毁,而Spark Streaming一直在运行,不断计算,每一秒中在不断运行都会产生大量的中间数据,所以需要对对象及元数据需要定期清理。每个batch duration运行时不断触发job后需要清理rdd和元数据。下面我们就结合源码详细解析一下Spark Streaming程序的数据清理机制。
    

    一、数据清理总览
    Spark Streaming 运行过程中,随着时间不断产生Job,当job运行结束后,需要清理相应的数据(RDD,元数据信息,Checkpoint数据
    ),Job由JobGenerator定时产生,数据的清理也是有JobGenerator负责。
    JobGenerator负责数据清理控制的代码位于一个消息循环体eventLoop中:

     eventLoop = new EventLoop[JobGeneratorEvent]("JobGenerator") {
    
     override protected def onReceive(event: JobGeneratorEvent): Unit = processEvent(event)
    
     
    
     override protected def onError(e: Throwable): Unit = {
    
     jobScheduler.reportError("Error in job generator", e)
    
     }
    
     }
    
     eventLoop.start()
    

    其中的核心逻辑位于processEvent(event)函数中:

     /** Processes all events */
    
     private def processEvent(event: JobGeneratorEvent) {
    
     logDebug("Got event " + event)
    
     event match {
    
     case GenerateJobs(time) => generateJobs(time)
    
     case ClearMetadata(time) => clearMetadata(time)
    
     case DoCheckpoint(time, clearCheckpointDataLater) =>
    
     doCheckpoint(time, clearCheckpointDataLater)
    
     case ClearCheckpointData(time) => clearCheckpointData(time)
    
     }
    
     }
    

    可以看到当JobGenerator收到ClearMetadata(time) 和 ClearCheckpointData(time)是会进行相应的数据清理,其中 clearMetadata(time)会清理RDD数据和一些元数据信息, ClearCheckpointData(time)会清理Checkpoint数据。

    二、数据清理过程详解
    2.1 ClearMetaData 过程详解

    首先看一下clearMetaData函数的处理逻辑:

     /** Clear DStream metadata for the given `time`. */
    
     private def clearMetadata(time: Time) {
    
     ssc.graph.clearMetadata(time)
    
     
    
     // If checkpointing is enabled, then checkpoint,
    
     // else mark batch to be fully processed
    
     if (shouldCheckpoint) {
    
     eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
    
     } else {
    
     // If checkpointing is not enabled, then delete metadata information about
    
     // received blocks (block data not saved in any case). Otherwise, wait for
    
     // checkpointing of this batch to complete.
    
     val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
    
     jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
    
     jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
    
     markBatchFullyProcessed(time)
    
     }
    
     }
    

    首先调用了DStreamGraph的clearMetadata方法:

     def clearMetadata(time: Time) {
    
     logDebug("Clearing metadata for time " + time)
    
     this.synchronized {
    
     outputStreams.foreach(_.clearMetadata(time))
    
     }
    
     logDebug("Cleared old metadata for time " + time)
    
     }
    

    这里调用了所有OutputDStream (关于DStream 的分类请参考http://blog.csdn.net/zhouzx2010/article/details/51460790)的clearMetadata方法

     private[streaming] def clearMetadata(time: Time) {
    
     val unpersistData = ssc.conf.getBoolean("spark.streaming.unpersist", true)
    
     //获取需要清理的RDD
    
     val oldRDDs = generatedRDDs.filter(_._1 <= (time - rememberDuration))
    
     logDebug("Clearing references to old RDDs: [" +
    
     oldRDDs.map(x => s"${x._1} -> ${x._2.id}").mkString(", ") + "]")
    
     //将要清除的RDD从generatedRDDs 中清除 
    
     generatedRDDs --= oldRDDs.keys
    
     if (unpersistData) {
    
     logDebug(s"Unpersisting old RDDs: ${oldRDDs.values.map(_.id).mkString(", ")}")
    
     oldRDDs.values.foreach { rdd =>
    
       //将RDD 从persistence列表中移除
    
     rdd.unpersist(false)
    
     // Explicitly remove blocks of BlockRDD
    
     rdd match {
    
     case b: BlockRDD[_] =>
    
     logInfo(s"Removing blocks of RDD $b of time $time")
    
     //移除RDD的block 数据
    
     b.removeBlocks()
    
     case _ =>
    
     }
    
     }
    
     }
    
     logDebug(s"Cleared ${oldRDDs.size} RDDs that were older than " +
    
     s"${time - rememberDuration}: ${oldRDDs.keys.mkString(", ")}")
    
     //清除依赖的DStream
    
     dependencies.foreach(_.clearMetadata(time))
    
     }
    

    关键的清理逻辑在代码中做了详细注释,首先清理DStream对应的RDD的元数据信息,然后清理RDD的数据,最后对DStream所依赖的DStream进行清理。

    回到JobGenerator的clearMetadata函数:

     if (shouldCheckpoint) {
    
     eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
    
     } else {
    
     // If checkpointing is not enabled, then delete metadata information about
    
     // received blocks (block data not saved in any case). Otherwise, wait for
    
     // checkpointing of this batch to complete.
    
     val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
    
     jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
    
     jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
    
     markBatchFullyProcessed(time)
    
     }
    

    调用了ReceiverTracker的 cleanupOldBlocksAndBatches方法,最后调用了clearupOldBatches方法:

     def cleanupOldBatches(cleanupThreshTime: Time, waitForCompletion: Boolean): Unit = synchronized {
    
     require(cleanupThreshTime.milliseconds < clock.getTimeMillis())
    
     val timesToCleanup = timeToAllocatedBlocks.keys.filter { _ < cleanupThreshTime }.toSeq
    
     logInfo(s"Deleting batches: ${timesToCleanup.mkString(" ")}")
    
     if (writeToLog(BatchCleanupEvent(timesToCleanup))) {
    
     //将要删除的Batch数据清除
    
     timeToAllocatedBlocks --= timesToCleanup
    
     //清理WAL日志
    
     writeAheadLogOption.foreach(_.clean(cleanupThreshTime.milliseconds, waitForCompletion))
    
     } else {
    
     logWarning("Failed to acknowledge batch clean up in the Write Ahead Log.")
    
     }
    
     }
    

    可以看到ReceiverTracker的clearupOldBatches方法清理了Receiver数据,也就是Batch数据和WAL日志数据。
    最后对InputInfoTracker信息进行清理:

     def cleanup(batchThreshTime: Time): Unit = synchronized {
    
     val timesToCleanup = batchTimeToInputInfos.keys.filter(_ < batchThreshTime)
    
     logInfo(s"remove old batch metadata: ${timesToCleanup.mkString(" ")}")
    
     batchTimeToInputInfos --= timesToCleanup
    
     }
    

    这简单的清除了batchTimeToInputInfos 的输入信息。

    2.2 ClearCheckPoint 过程详解

    看一下clearCheckpointData的处理逻辑:****

     /** Clear DStream checkpoint data for the given `time`. */
    
     private def clearCheckpointData(time: Time) {
    
     ssc.graph.clearCheckpointData(time)
    
     
    
     // All the checkpoint information about which batches have been processed, etc have
    
     // been saved to checkpoints, so its safe to delete block metadata and data WAL files
    
     val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
    
     jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
    
     jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
    
     markBatchFullyProcessed(time)
    
     }
    

    后面的ReceiverTraker和InputInforTracker的清理逻辑和ClearMetaData的相同,这分析DStreamGraph的clearCheckpointData方法:

     def clearCheckpointData(time: Time) {
    
     logInfo("Clearing checkpoint data for time " + time)
    
     this.synchronized {
    
     outputStreams.foreach(_.clearCheckpointData(time))
    
     }
    
     logInfo("Cleared checkpoint data for time " + time)
    
     }
    

    同样的调用了DStreamGraph中所有OutputDStream的clearCheckPiontData 方法:

     private[streaming] def clearCheckpointData(time: Time) {
    
     logDebug("Clearing checkpoint data")
    
     checkpointData.cleanup(time)
    
     dependencies.foreach(_.clearCheckpointData(time))
    
     logDebug("Cleared checkpoint data")
    
     }
    

    这里的核心逻辑在checkpointData.cleanup(time)方法,这里的CheckpointData 是 DStreamCheckpointData对象, DStreamCheckpointData的clearup方法如下:

    def cleanup(time: Time) {
    
     // 获取需要清理的Checkpoint 文件 时间
    
     timeToOldestCheckpointFileTime.remove(time) match {
    
     case Some(lastCheckpointFileTime) =>
    
     //获取需要删除的文件
    
     val filesToDelete = timeToCheckpointFile.filter(_._1 < lastCheckpointFileTime)
    
     logDebug("Files to delete:\n" + filesToDelete.mkString(","))
    
     filesToDelete.foreach {
    
     case (time, file) =>
    
     try {
    
     val path = new Path(file)
    
     if (fileSystem == null) {
    
     fileSystem = path.getFileSystem(dstream.ssc.sparkContext.hadoopConfiguration)
    
     }
    
     //
    
     ** 删除文件**
    **  **** **  
    
     fileSystem.delete(path, true)
    
     timeToCheckpointFile -= time
    
     logInfo("Deleted checkpoint file '" + file + "' for time " + time)
    
     } catch {
    
     case e: Exception =>
    
     logWarning("Error deleting old checkpoint file '" + file + "' for time " + time, e)
    
     fileSystem = null
    
     }
    
     }
    
     case None =>
    
     logDebug("Nothing to delete")
    
     }
    
     }
    

    可以看到checkpoint的清理,就是删除了指定时间以前的checkpoint文件。

    三、数据清理的触发
    **3.1 ClearMetaData 过程的触发******
    JobGenerator 生成job后,交给JobHandler执行, JobHandler的run方法中,会在job执行完后给JobScheduler 发送JobCompleted消息:

     _eventLoop = eventLoop
    
     if (_eventLoop != null) {
    
     _eventLoop.post(JobCompleted(job, clock.getTimeMillis()))
    
     
    
     }
    
    JobScheduler 收到JobCompleted 消息调用 handleJobCompletion 方法,源码如下:
    
     private def processEvent(event: JobSchedulerEvent) {
    
     try {
    
     event match {
    
     case JobStarted(job, startTime) => handleJobStart(job, startTime)
    
     case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
    
     case ErrorReported(m, e) => handleError(m, e)
    
     }
    
     } catch {
    
     case e: Throwable =>
    
     reportError("Error in job scheduler", e)
    
     }
    
     }
    

    在 JobScheduler 的handleJobCompletion方法中会调用JobGenerator的onBatchCompletion方法,我们看一下JobGenerator的 onBatchCompletion 方法的源码:

     def onBatchCompletion(time: Time) {
    
     eventLoop.post(ClearMetadata(time))
    
     }
    

    可以看到JobGenerator的onBatchCompletion方法给自己发送了ClearMetadata消息从而触发了ClearMetaData操作。

    3.2 ****ClearCheckPoint ****过程的触发
    清理CheckPoint数据发生在CheckPoint完成之后,我们先看一下CheckPointHandler的run方法:


     // All done, print success
    
     val finishTime = System.currentTimeMillis()
    
     logInfo("Checkpoint for time " + checkpointTime + " saved to file '" + checkpointFile +
    
     "', took " + bytes.length + " bytes and " + (finishTime - startTime) + " ms")
    
     //调用JobGenerator的方法进行checkpoint数据清理
    
     jobGenerator.onCheckpointCompletion(checkpointTime, clearCheckpointDataLater)
    
    

    可以看到在checkpoint完成后,会调用JobGenerator的onCheckpointCompletion方法进行checkpoint数据清理,我查看JobGenerator的onCheckpointCompletion方法源码:

     def onCheckpointCompletion(time: Time, clearCheckpointDataLater: Boolean) {
    
     if (clearCheckpointDataLater) {
    
     eventLoop.post(ClearCheckpointData(time))
    
     }
    
     }
    

    可以看到JobGenerator的onCheckpointCompletion方法中首先对传进来的 clearCheckpointDataLater 参数进行判断,如果该参数为true,就会给JobGenerator的eventLoop循环体发送ClearCheckpointData消息,从而触发clearCheckpointData 方法的调用,进行Checkpoint数据的清理。
    什么时候该参数会true呢?
    我们回到JobGenerator的 ClearMetadata 方法:

     private def clearMetadata(time: Time) {
    
     ssc.graph.clearMetadata(time)
    
     
    
     if (shouldCheckpoint) {
    
     //发送DoCheckpoint消息,并进行相应的Checkpoint数据清理
    
     eventLoop.post(DoCheckpoint(time, clearCheckpointDataLater = true))
    
     } else {
    
     val maxRememberDuration = graph.getMaxInputStreamRememberDuration()
    
     jobScheduler.receiverTracker.cleanupOldBlocksAndBatches(time - maxRememberDuration)
    
     jobScheduler.inputInfoTracker.cleanup(time - maxRememberDuration)
    
     markBatchFullyProcessed(time)
    
     }
    
     }
    

    可以看到在clearMetadata方法中,发送了DoCheckpoint消息,其中参数 clearCheckpointDataLater 为ture。Generator的eventLoop收到该消息后调用 doCheckpoint 方法:

     private def doCheckpoint(time: Time, clearCheckpointDataLater: Boolean) {
    
     if (shouldCheckpoint && (time - graph.zeroTime).isMultipleOf(ssc.checkpointDuration)) {
    
     logInfo("Checkpointing graph for time " + time)
    
     ssc.graph.updateCheckpointData(time)
    
     checkpointWriter.write(new Checkpoint(ssc, time), clearCheckpointDataLater)
    
     }
    
     }
    

    这里关键一步:调用了CheckpointWriter的write方法,注意此时参数 clearCheckpointDataLater 为true。我们进入该方法:

     def write(checkpoint: Checkpoint, clearCheckpointDataLater: Boolean) {
    
     try {
    
     val bytes = Checkpoint.serialize(checkpoint, conf)
    
    //将参数clearCheckpointDataLater传入CheckpoitWriteHandler
    
     executor.execute(new CheckpointWriteHandler(
    
     checkpoint.checkpointTime, bytes, clearCheckpointDataLater))
    
     logInfo("Submitted checkpoint of time " + checkpoint.checkpointTime + " writer queue")
    
     } catch {
    
     case rej: RejectedExecutionException =>
    
     logError("Could not submit checkpoint task to the thread pool executor", rej)
    
     }
    
     }
    

    可以看到此时参数 clearCheckpointDataLater 传入CheckpointWriteHandler 。这样Checkpoint完成之后就会发送ClearCheckpointData消息给JobGenerator进行Checkpoint数据的清理。

    相关文章

      网友评论

        本文标题:16.Spark Streaming源码解读之数据清理机制解析

        本文链接:https://www.haomeiwen.com/subject/ennfjttx.html