最近一段时间特别迷茫,不知道学习的方向,也好花点时间给大家讲一下pandas这个python数据分析吧。
import pandas as pd
import numpy as np
s = pd.Series([1,3,5,np.nan,6,8])
s
s.index
Out[5]:
0 1.0
1 3.0
2 5.0
3 NaN
4 6.0
5 8.0
dtype: float64
Int64Index([0,1,2,3,4,5],dtype=int64)
Series是pandas里面重要的一个包,相信大家也看出来了他是干嘛的。
其实你会发现和数据库的表结构很相似。
In [6]: dates = pd.date_range('20130101', periods=6)
In [7]: dates
Out[7]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D')
In [8]: df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))
In [9]: df
Out[9]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
我们这里看到dataframe的作用,columns,index还有填充的数据内容。
>>> import pandas as pd
>>> from pandas import Series, DataFrame
>>> data = {"name":["yahoo","google","facebook"], "marks":[200,400,800], "price":[9, 3, 7]}
>>> f1 = DataFrame(data)
>>> f1
marks name price
0 200 yahoo 9
1 400 google 3
2 800 facebook 7
看到这个我想大家就知道dataframe其实就是干这个事的。
我们可以看到这个columns的排序是按照字母升序排的,我们可以自定义。
>>> f2 = DataFrame(data, columns=['name','price','marks'])
>>> f2
name price marks
0 yahoo 9 200
1 google 3 400
2 facebook 7 800
In [10]: df2 = pd.DataFrame({ 'A' : 1.,
....: 'B' : pd.Timestamp('20130102'),
....: 'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
....: 'D' : np.array([3] * 4,dtype='int32'),
....: 'E' : pd.Categorical(["test","train","test","train"]),
....: 'F' : 'foo' })
....:
In [11]: df2
Out[11]:
A B C D E F
0 1.0 2013-01-02 1.0 3 test foo
1 1.0 2013-01-02 1.0 3 train foo
2 1.0 2013-01-02 1.0 3 test foo
3 1.0 2013-01-02 1.0 3 train foo
In [12]: df2.dtypes
Out[12]:
A float64
B datetime64[ns]
C float32
D int32
E category
F object
dtype: object
>>> data = {"name":["yahoo","google","facebook"], "marks":[200,400,800], "price":[9, 3, 7]}
>>> f3 = DataFrame(data, columns=['name', 'price', 'marks', 'debt'], index=['a','b','c'])
>>> f3
name price marks debt
a yahoo 9 200 NaN
b google 3 400 NaN
c facebook 7 800 NaN
>>> f3.columns
Index(['name', 'price', 'marks', 'debt'], dtype=object)
>>> f3['name']
a yahoo
b google
c facebook
Name: name
>>> f3['debt'] = 89.2
>>> f3
name price marks debt
a yahoo 9 200 89.2
b google 3 400 89.2
c facebook 7 800 89.2
>>> sdebt = Series([2.2, 3.3], index=["a","c"]) #注意索引
>>> f3['debt'] = sdebt
>>> f3
name price marks debt
a yahoo 9 200 2.2
b google 3 400 NaN
c facebook 7 800 3.3
>>> f3["price"]["c"]= 300
>>> f3
name price marks debt
a yahoo 9 200 2.2
b google 3 400 NaN
c facebook 300 800 3.3
See the top & bottom rows of the frame
In [14]: df.head()
Out[14]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
In [15]: df.tail(3)
Out[15]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
In [18]: df.values
Out[18]:
array([[ 0.4691, -0.2829, -1.5091, -1.1356],
[ 1.2121, -0.1732, 0.1192, -1.0442],
[-0.8618, -2.1046, -0.4949, 1.0718],
[ 0.7216, -0.7068, -1.0396, 0.2719],
[-0.425 , 0.567 , 0.2762, -1.0874],
[-0.6737, 0.1136, -1.4784, 0.525 ]])
head是截取前5行。
Describe shows a quick statistic summary of your data
In [19]: df.describe()
Out[19]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804
Transposing your data
In [20]: df.T
Out[20]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
In [22]: df.sort_values(by='B')
Out[22]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
Selecting via [], which slices the rows.
In [24]: df[0:3]
Out[24]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
In [25]: df['20130102':'20130104']
Out[25]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64
In [27]: df.loc[:,['A','B']]
Out[27]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648
关于 csv 文件
csv 是一种通用的、相对简单的文件格式,在表格类型的数据中用途很广泛,很多关系型数据库都支持这种类型文件的导入导出,并且 excel 这种常用的数据表格也能和 csv 文件之间转换。
name,physics,python,math,english
Google,100,100,25,12
Facebook,45,54,44,88
Twitter,54,76,13,91
Yahoo,54,452,26,100
>>> with open("./marks.csv") as f:
... for line in f:
... print line
...
name,physics,python,math,english
Google,100,100,25,12
Facebook,45,54,44,88
Twitter,54,76,13,91
Yahoo,54,452,26,100
>>> import csv
>>> dir(csv)
['Dialect', 'DictReader', 'DictWriter', 'Error', 'QUOTE_ALL', 'QUOTE_MINIMAL', 'QUOTE_NONE', 'QUOTE_NONNUMERIC', 'Sniffer', 'StringIO', '_Dialect', '__all__', '__builtins__', '__doc__', '__file__', '__name__', '__package__', '__version__', 'excel', 'excel_tab', 'field_size_limit', 'get_dialect', 'list_dialects', 're', 'reader', 'reduce', 'register_dialect', 'unregister_dialect', 'writer']
>>> import pandas as pd
>>> marks = pd.read_csv("./marks.csv")
>>> marks
name physics python math english
0 Google 100 100 25 12
1 Facebook 45 54 44 88
2 Twitter 54 76 13 91
3 Yahoo 54 452 26 100
>>> marks.sort(column="python")
name physics python math english
1 Facebook 45 54 44 88
2 Twitter 54 76 13 91
0 Google 100 100 25 12
3 Yahoo 54 452 26 100
代码分享就到这。。。
网友评论