美文网首页GSEA
2020-10-24 RNAseq 从fq开始分析全流程

2020-10-24 RNAseq 从fq开始分析全流程

作者: 程凉皮儿 | 来源:发表于2020-10-24 15:51 被阅读0次

    分析流程

    image.png

    1.上传四个样本原始就文件到服务器

    参考https://www.jianshu.com/p/a84cd44bac67从原始数据开始分析

    参考https://github.com/twbattaglia/RNAseq-workflow

    Step 1. Analysing Sequence Quality with FastQC

    http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

    Description

    "FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis."

    The first step before processing any samples is to analyze the quality of the data. Within the fastq file is quality information that refers to the accuracy (% confidence) of each base call. FastQC looks at different aspects of the sample sequences to determine any irregularies or features that make affect your results (adapter contamination, sequence duplication levels, etc.)

    Installation

    conda install -c bioconda fastqc --yes
    

    Command

    # Help
    fastqc -h
    
    # Run FastQC
    fastqc \
    -o results/1_initial_qc/ \
    --noextract \
    input/sample.fastq
    

    Output

    ── results/1_initial_qc/
        └──  sample_fastqc.html   <-  HTML file of FastQC fquality analysis figures
        └──  sample_fastqc.zip    <- FastQC report data
    

    2.质控

    fastqc生成质控报告,multiqc将各个样本的质控报告整合为一个。

    (rna) cheng@super-Super-Server:~/project$ ls
    NALM6-ctrl_combined_R1.filtered.1.fq.gz
    NALM6-ctrl_combined_R1.filtered.2.fq.gz
    NALM6-treat_combined_R1.filtered.1.fq.gz
    NALM6-treat_combined_R1.filtered.2.fq.gz
    RS411-ctrl_combined_R1.filtered.1.fq.gz
    RS411-ctrl_combined_R1.filtered.2.fq.gz
    RS411-treat_combined_R1.filtered.1.fq.gz
    RS411-treat_combined_R1.filtered.2.fq.gz
    (rna) cheng@super-Super-Server:~/project$ ls *gz | xargs fastqc -t 2
    

    第一步fastqc生成质控报告,-t设为2时同时分析2个原始fq数据,等待约30min完成,因为本服务器没安装multiqc,就暂时不做整合。

    Step2: filter the bad quality reads and remove adaptors.

    • 运行如下代码,得到名为config的文件,包含两列数据
    mkdir $wkd/clean 
    cd $wkd/clean 
    ls /home/data/cheng/project/raw/*1.fq.gz >1
    ls /home/data/cheng/project/raw/*2.fq.gz >2
    paste 1 2  > config
    
    (rna) cheng@super-Super-Server:~/project$ pwd
    /home/cheng/project
    (rna) cheng@super-Super-Server:~/project$ mkdir -p clean
    (rna) cheng@super-Super-Server:~/project$ cd clean/
    (rna) cheng@super-Super-Server:~/project/clean$ ls /home/data/cheng/project/raw/*.1.fq.gz >1
    (rna) cheng@super-Super-Server:~/project/clean$ ls /home/data/cheng/project/raw/*.2.fq.gz >2
    (rna) cheng@super-Super-Server:~/project/clean$ paste 1 2 > config
    (rna) cheng@super-Super-Server:~/project/clean$ cat config
    /home/cheng/project/raw/NALM6-ctrl_combined_R1.filtered.1.fq.gz /home/cheng/project/raw/NALM6-ctrl_combined_R1.filtered.2.fq.gz
    /home/cheng/project/raw/NALM6-treat_combined_R1.filtered.1.fq.gz    /home/cheng/project/raw/NALM6-treat_combined_R1.filtered.2.fq.gz
    /home/cheng/project/raw/RS411-ctrl_combined_R1.filtered.1.fq.gz /home/cheng/project/raw/RS411-ctrl_combined_R1.filtered.2.fq.gz
    /home/cheng/project/raw/RS411-treat_combined_R1.filtered.1.fq.gz    /home/cheng/project/raw/RS411-treat_combined_R1.filtered.2.fq.gz
    (rna) cheng@super-Super-Server:~/project/clean$ vi qc.sh
    (rna) cheng@super-Super-Server:~/project/clean$ bash qc.sh config
    
    • 打开文件 qc.sh ,并且写入如下内容

    trim_galore,用于去除低质量和接头数据

    source activate rna
    bin_trim_galore=trim_galore
    dir='/home/data/cheng/project/clean'
    cat $1 |while read id
    do
            arr=(${id})
            fq1=${arr[0]}
            fq2=${arr[1]} 
     $bin_trim_galore -q 25 --phred33 --length 36 --stringency 3 --paired -o $dir  $fq1 $fq2 
    done 
    source deactivate 
    
    • 运行qc.sh
    bash qc.sh config #config是传递进去的参数
    
    • 结果显示如下
    RUN STATISTICS FOR INPUT FILE: /home/cheng/project/raw/RS411-ctrl_combined_R1.filtered.1.fq.gz
    =============================================
    31046571 sequences processed in total
    The length threshold of paired-end sequences gets evaluated later on (in the validation step)
    
    Writing report to '/home/cheng/project/clean/RS411-ctrl_combined_R1.filtered.2.fq.gz_trimming_report.txt'
    
    SUMMARISING RUN PARAMETERS
    ==========================
    Input filename: /home/cheng/project/raw/RS411-ctrl_combined_R1.filtered.2.fq.gz
    Trimming mode: paired-end
    Trim Galore version: 0.6.4_dev
    Cutadapt version: 2.6
    Number of cores used for trimming: 1
    Quality Phred score cutoff: 25
    Quality encoding type selected: ASCII+33
    Adapter sequence: 'AGATCGGAAGAGC' (Illumina TruSeq, Sanger iPCR; auto-detected)
    Maximum trimming error rate: 0.1 (default)
    Minimum required adapter overlap (stringency): 3 bp
    Minimum required sequence length for both reads before a sequence pair gets removed: 36 bp
    Output file(s) will be GZIP compressed
    
    Cutadapt seems to be fairly up-to-date (version 2.6). Setting -j -j 1
    Writing final adapter and quality trimmed output to RS411-ctrl_combined_R1.filtered.2_trimmed.fq.gz
    
    
      >>> Now performing quality (cutoff '-q 25') and adapter trimming in a single pass for the adapter sequence: 'AGATCGGAAGAGC' from file /home/cheng/project/raw/RS411-ctrl_combined_R1.filtered.2.fq.gz <<<
    Connection to 192.168.1.6 closed by remote host.
    Connection to 192.168.1.6 closed.
    

    我的程序被中断了,因为内存不足可能

    管理员给我发一个提醒:

    (rna) cheng@super-Super-Server:~$ cat A_Message_from_Admin
    your programme almost used all the disk, so I killed it.
    Please move all your data to /home/data, this directory is on the other disk and it is big enough to run your programme.
    
    After you read this message, you can delete it by yourself. I changed the owner to you.
    

    更换工作目录:

    (rna) cheng@super-Super-Server:~$ mv project/ /home/data/
    (rna) cheng@super-Super-Server:~$ cd /home/data/
    (rna) cheng@super-Super-Server:/home/data$ mv project/ cheng/
    (rna) cheng@super-Super-Server:/home/data$ cd cheng
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls
    project
    

    查看目录下软件信息

    (rna) cheng@super-Super-Server:/home/data/cheng$ ls /home/data/reference/
    genome  gtf  hisat  index  trnadb
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls /home/data/biosoft/
    cellranger-4.0.0          JAGS-4.3.0         ncbi-blast-2.10.1+                   refdata-gex-GRCh38-2020-A.tar.gz  tophat-2.1.1.Linux_x86_64.tar.gz
    cellranger-4.0.0.tar.tar  JAGS-4.3.0.tar.gz  ncbi-blast-2.10.1+-x64-linux.tar.gz  RNA-SeQC                          wget.out
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls /home/data/biosoft/RNA-SeQC/
    gencode.v7.annotation_goodContig.gtf.gz  gencode.v7.gc.txt  Homo_sapiens_assembly19.fasta.gz  rRNA.tar.gz  ThousandReads.bam
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls /home/data/reference/genome/
    GRCh38_reference_genome  hg19  hg38  M25  mm10
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls /home/data/reference/gtf/
    ensembl  gencode
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls /home/data/reference/hisat/
    grcm38.tar.gz  hg19.tar.gz  hg38.tar.gz  mm10.tar.gz
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls /home/data/reference/index/
    bowtie  bwa  hisat  tophat
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls /home/data/reference/trnadb/
    hg38  mm10
    

    本服务器可以用比对软件较多:

    (rna) cheng@super-Super-Server:/home/data/cheng$ ls /home/data/reference/index/
    bowtie  bwa  hisat  tophat
    

    先完成去去接头:

    #确定工作目录
    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ pwd
    /home/data/cheng/project/clean
    #构建 config
    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ ls /home/data/cheng/project/raw/*1.fq.gz >1
    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ ls /home/data/cheng/project/raw/*2.fq.gz >2
    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ paste 1 2  > config
    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ ls
    1  2  config
    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ cat config
    /home/data/cheng/project/raw/NALM6-ctrl_combined_R1.filtered.1.fq.gz    /home/data/cheng/project/raw/NALM6-ctrl_combined_R1.filtered.2.fq.gz
    /home/data/cheng/project/raw/NALM6-treat_combined_R1.filtered.1.fq.gz   /home/data/cheng/project/raw/NALM6-treat_combined_R1.filtered.2.fq.gz
    /home/data/cheng/project/raw/RS411-ctrl_combined_R1.filtered.1.fq.gz    /home/data/cheng/project/raw/RS411-ctrl_combined_R1.filtered.2.fq.gz
    /home/data/cheng/project/raw/RS411-treat_combined_R1.filtered.1.fq.gz   /home/data/cheng/project/raw/RS411-treat_combined_R1.filtered.2.fq.gz
    #编写质控脚本
    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ vi qc.sh
    #将任务挂到后台运行
    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ nohup bash qc.sh config &
    [1] 16284
    

    step4: alignment

    star, hisat2, bowtie2, tophat, bwa, subread都是可以用于比到的软件

    可参考https://www.jianshu.com/p/a84cd44bac67

    • 先运行一个样本,测试一下
    mkdir $wkd/test 
    cd $wkd/test 
    source activate rna
    ls $wkd/clean/*gz |while read id;do (zcat ${id}|head -1000>  $(basename ${id} ".gz"));done
    id=SRR1039508
    hisat2 -p 10 -x /public/reference/index/hisat/hg38/genome -1 ${id}_1_val_1.fq   -2 ${id}_2_val_2.fq  -S ${id}.hisat.sam
    subjunc -T 5  -i /public/reference/index/subread/hg38 -r ${id}_1_val_1.fq -R ${id}_2_val_2.fq -o ${id}.subjunc.sam  
    bowtie2 -p 10 -x /public/reference/index/bowtie/hg38  -1 ${id}_1_val_1.fq   -2 ${id}_2_val_2.fq  -S ${id}.bowtie.sam
    bwa mem -t 5 -M  /public/reference/index/bwa/hg38   ${id}_1_val_1.fq   ${id}_2_val_2.fq > ${id}.bwa.sam
    

    事实上,对RNA-seq数据来说,不要使用bwa和bowtie这样的软件,它需要的是能进行跨越内含子比对的工具。所以后面就只先择hisat2,STAR进行下一步,但是本服务器中hisat2的索引文件不完整,最后只用STAR进行了比对

    • 批量比对代码
    cd $wkd/clean 
    ls *gz|cut -d"_" -f 1 |sort -u |while read id;do
    ls -lh ${id}_combined_R1.filtered.1_val_1.fq.gz   ${id}_combined_R1.filtered.2_val_2.fq.gz 
    hisat2 -p 10 -x /home/data/reference/index/hisat/hg38/genome -1 ${id}_combined_R1.filtered.1_val_1.fq.gz   -2 ${id}_combined_R1.filtered.2_val_2.fq.gz  -S ${id}.hisat.sam
    done 
    
    Note the two inputs for this command are the genome located in the (genome/ folder) and the annotation file located in the (annotation/ folder)
    # This can take up to 30 minutes to complete
    STAR \
    --runMode genomeGenerate \
    --genomeDir star_index \
    --genomeFastaFiles /home/data/reference/genome/hg38/* \
    --sjdbGTFfile /home/data/reference/gtf/ensembl/* \
    --runThreadN 4
    
    # Help
    STAR -h
    
    # Run STAR (~10min)
    STAR \
    --genomeDir star_index \
    --readFilesIn filtered/sample_filtered.fq  \
    --runThreadN 4 \
    --outSAMtype BAM SortedByCoordinate \
    --quantMode GeneCounts
    
    # Move the BAM file into the correct folder
    mv -v results/4_aligned_sequences/sampleAligned.sortedByCoord.out.bam results/4_aligned_sequences/aligned_bam/
    
    # Move the logs into the correct folder
    mv -v results/4_aligned_sequences/${BN}Log.final.out results/4_aligned_sequences/aligned_logs/
    mv -v results/4_aligned_sequences/sample*Log.out results/4_aligned_sequences/aligned_logs/
    

    先构建STAR索引

    Generating Indexes

    Similar to the SortMeRNA step, we must first generate an index of the genome we want to align to, so that there tools can efficently map over millions of sequences. The star_index folder will be the location that we will keep the files necessary to run STAR and due to the nature of the program, it can take up to 30GB of space. This step only needs to be run once and can be used for any subsequent RNAseq alignment analyses.

    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ STAR
    Usage: STAR  [options]... --genomeDir /path/to/genome/index/   --readFilesIn R1.fq R2.fq
    Spliced Transcripts Alignment to a Reference (c) Alexander Dobin, 2009-2020
    
    STAR version=2.7.5a
    STAR compilation time,server,dir=Tue Jun 16 12:17:16 EDT 2020 vega:/home/dobin/data/STAR/STARcode/STAR.master/source
    For more details see:
    <https://github.com/alexdobin/STAR>
    <https://github.com/alexdobin/STAR/blob/master/doc/STARmanual.pdf>
    
    To list all parameters, run STAR --help
    (rna) cheng@super-Super-Server:/home/data/cheng/project/clean$ cd /home/data/cheng
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls
    project
    (rna) cheng@super-Super-Server:/home/data/cheng$ nohup STAR \
    > --runMode genomeGenerate \
    > --genomeDir star_index \
    > --genomeFastaFiles /home/data/reference/genome/* \
    > --sjdbGTFfile /home/data/reference/gtf/* \
    > --runThreadN 4 &
    [2] 18522
    (rna) cheng@super-Super-Server:/home/data/cheng$ nohup: ignoring input and appending output to 'nohup.out'
    
    [2]+  Exit 104                nohup STAR --runMode genomeGenerate --genomeDir star_index --genomeFastaFiles /home/data/reference/genome/* --sjdbGTFfile /home/data/reference/gtf/* --runThreadN 4
    (rna) cheng@super-Super-Server:/home/data/cheng$ ls
    nohup.out  project  star_index  _STARtmp
    

    参考https://blog.csdn.net/yssxswl/article/details/105703869完成索引构建

    STAR --runThreadN 20 --runMode genomeGenerate \
    --genomeDir /home/data/cheng/star_index \
    --genomeFastaFiles /home/data/reference/genome/GRCh38_reference_genome/GRCh38_full_analysis_set_plus_decoy_hla.fa \
    --sjdbGTFfile /home/data/reference/gtf/gencode.v35.annotation.gtf \
    

    –runThreadN 是指构建是使用的线程数,在没有其他数据在跑的情况下,可以满线程跑
    –runMode genomeGenerate 让STAR执行基因组索引的生成工作
    –genomeDir 构建好的参考基因组存放的位置,最好是单独建立的一个文件夹
    –genomeFastaFiles 参考基因组序列文件
    –sjdbGTFfile 基因注释文件

    比对

    我们来看一下比对的代码

    STAR 
    --runThreadN 20 \
    --genomeDir /home/data/cheng/star_index \
    --readFilesCommand gunzip -c \
    --readFilesIn /home/data/cheng/ /home/data/cheng/ \
    --outSAMtype BAM SortedByCoordinate \
    --outFileNamePrefix N052611_Alb \
    

    –runThreadN 运行的线程数,根据自己的服务器合理选择
    –genomeDir 构建的参考基因组位置
    –readFilesCommand 对于gz压缩的文件,我们可以在后面添加 gunzip -c
    –readFilesIn 输入文件的位置,对于双末端测序文件,用空格分隔开就行了
    –outSAMtype 默认输出的是sam文件,我们这里的BAM SortedByCoordinate是让他输出为ban文件,并排序
    –outFileNamePrefix 表示的是输出文件的位置和前缀

    然后就是输出文件的问题,输出的文件不止一个,包含了比对过程中的一些信息

    1. Aligned.out.sam或者Aligned.out.bam
      它指的就是我们的比对结果
    2. Log.progress.out
      它是每分钟记录一次的对比情况
    3. Log.out
      它记录了STAR程序在运行中的各种情况,当我们的结果出现异常时,我们可以查看具体的运行情况,来查找错误
    4. Log.final.out
      它包含的是对比完以后的对比统计信息
    5. SJ.out.tab
      它包含了剪切的信息
    nohup STAR --runThreadN 20 --genomeDir /home/data/cheng/star_index --readFilesCommand gunzip -c --readFilesIn /home/data/cheng/project/raw/NALM6-ctrl_combined_R1.filtered.1.fq.gz /home/data/cheng/project/raw/NALM6-ctrl_combined_R1.filtered.2.fq.gz --outSAMtype BAM SortedByCoordinate --quantMode GeneCounts &
    
    nohup STAR --runThreadN 4 --genomeDir /home/data/cheng/star_index --readFilesCommand gunzip -c --readFilesIn /home/data/cheng/project/raw/NALM6-ctrl_combined_R1.filtered.1.fq.gz /home/data/cheng/project/raw/NALM6-ctrl_combined_R1.filtered.2.fq.gz --outSAMtype BAM SortedByCoordinate --quantMode GeneCounts --outFileNamePrefix NALM6-ctrl &
    
    nohup STAR --runThreadN 4 --genomeDir /home/data/cheng/star_index --readFilesCommand gunzip -c --readFilesIn /home/data/cheng/project/raw/NALM6-treat_combined_R1.filtered.1.fq.gz /home/data/cheng/project/raw/NALM6-treat_combined_R1.filtered.2.fq.gz --outSAMtype BAM SortedByCoordinate --quantMode GeneCounts --outFileNamePrefix NALM6-treat &
    
    nohup STAR --runThreadN 4 --genomeDir /home/data/cheng/star_index --readFilesCommand gunzip -c --readFilesIn /home/data/cheng/project/raw/RS411-ctrl_combined_R1.filtered.1.fq.gz /home/data/cheng/project/raw/RS411-ctrl_combined_R1.filtered.2.fq.gz --outSAMtype BAM SortedByCoordinate --quantMode GeneCounts --outFileNamePrefix RS411-ctrl &
    
    nohup STAR --runThreadN 4 --genomeDir /home/data/cheng/star_index --readFilesCommand gunzip -c --readFilesIn /home/data/cheng/project/raw/RS411-treat_combined_R1.filtered.1.fq.gz /home/data/cheng/project/raw/RS411-treat_combined_R1.filtered.2.fq.gz --outSAMtype BAM SortedByCoordinate --quantMode GeneCounts --outFileNamePrefix RS411-treat &
    
    # Move the BAM file into the correct folder
    mv -v *Aligned.sortedByCoord.out.bam /home/data/cheng/project/results/4_aligned_sequences/aligned_bam/
    
    # Move the logs into the correct folder
    mv -v *.out /home/data/cheng/project/results/4_aligned_sequences/aligned_logs/
    
    

    Step 5. Summarizing Gene Counts with featureCounts

    https://www.ncbi.nlm.nih.gov/pubmed/24227677

    Description

    "featureCounts is a highly efficient general-purpose read summarization program that counts mapped reads for genomic features such as genes, exons, promoter, gene bodies, genomic bins and chromosomal locations. It can be used to count both RNA-seq and genomic DNA-seq reads. featureCounts takes as input SAM/BAM files and an annotation file including chromosomal coordinates of features. It outputs numbers of reads assigned to features (or meta-features). It also outputs stat info for the overall summrization results, including number of successfully assigned reads and number of reads that failed to be assigned due to various reasons (these reasons are included in the stat info)."

    Now that we have our .BAM alignment files, we can then proceed to try and summarize these coordinates into genes and abundances. To do this we must summarize the reads using featureCounts or any other read summarizer tool, and produce a table of genes by samples with raw sequence abundances. This table will then be used to perform statistical analysis and find differentially expressed genes.

    # Help
    featureCounts -h
    
    # Change directory into the aligned .BAM folder
    cd /home/data/cheng/project/results/4_aligned_sequences/aligned_bam
    
    # Store list of files as a variable
    dirlist=$(ls -t ./*.bam | tr '\n' ' ')
    echo $dirlist
    
    # Run featureCounts on all of the samples (~10 minutes)
    featureCounts \
    -a /home/data/reference/gtf/* \
    -o /home/data/cheng/project/results/5_final_counts/final_counts.txt \
    -g 'gene_name' \
    -T 4 \
    $dirlist
    
    (rna) cheng@super-Super-Server:/home/data/cheng/project/results/4_aligned_sequences/aligned_bam$ featureCounts -a /home/data/reference/gtf/* -o /home/data/cheng/project/results/5_final_counts/final_counts.txt -g 'gene_name' -T 4 $dirlist
    
            ==========     _____ _    _ ____  _____  ______          _____
            =====         / ____| |  | |  _ \|  __ \|  ____|   /\   |  __ \
              =====      | (___ | |  | | |_) | |__) | |__     /  \  | |  | |
                ====      \___ \| |  | |  _ <|  _  /|  __|   / /\ \ | |  | |
                  ====    ____) | |__| | |_) | | \ \| |____ / ____ \| |__| |
            ==========   |_____/ \____/|____/|_|  \_\______/_/    \_\_____/
          v2.0.1
    
    //========================== featureCounts setting ===========================\\
    ||                                                                            ||
    ||             Input files : 4 BAM files                                      ||
    ||                           o NALM6-treatAligned.sortedByCoord.out.bam       ||
    ||                           o RS411-ctrlAligned.sortedByCoord.out.bam        ||
    ||                           o RS411-treatAligned.sortedByCoord.out.bam       ||
    ||                           o NALM6-ctrlAligned.sortedByCoord.out.bam        ||
    ||                                                                            ||
    ||             Output file : final_counts.txt                                 ||
    ||                 Summary : final_counts.txt.summary                         ||
    ||              Annotation : gencode.v35.annotation.gtf (GTF)                 ||
    ||      Dir for temp files : /home/data/cheng/project/results/5_final_counts  ||
    ||                                                                            ||
    ||                 Threads : 4                                                ||
    ||                   Level : meta-feature level                               ||
    ||              Paired-end : no                                               ||
    ||      Multimapping reads : not counted                                      ||
    || Multi-overlapping reads : not counted                                      ||
    ||   Min overlapping bases : 1                                                ||
    ||                                                                            ||
    \\============================================================================//
    
    //================================= Running ==================================\\
    ||                                                                            ||
    || Load annotation file gencode.v35.annotation.gtf ...                        ||
    ||    Features : 1398443                                                      ||
    ||    Meta-features : 59609                                                   ||
    ||    Chromosomes/contigs : 25                                                ||
    ||                                                                            ||
    || Process BAM file NALM6-treatAligned.sortedByCoord.out.bam...               ||
    ||    WARNING: Paired-end reads were found.                                   ||
    ||    Total alignments : 86954860                                             ||
    ||    Successfully assigned alignments : 37685067 (43.3%)                     ||
    ||    Running time : 0.57 minutes                                             ||
    ||                                                                            ||
    || Process BAM file RS411-ctrlAligned.sortedByCoord.out.bam...                ||
    ||    WARNING: Paired-end reads were found.                                   ||
    ||    Total alignments : 69733102                                             ||
    ||    Successfully assigned alignments : 30363294 (43.5%)                     ||
    ||    Running time : 0.46 minutes                                             ||
    ||                                                                            ||
    || Process BAM file RS411-treatAligned.sortedByCoord.out.bam...               ||
    ||    WARNING: Paired-end reads were found.                                   ||
    ||    Total alignments : 81999795                                             ||
    ||    Successfully assigned alignments : 34018798 (41.5%)                     ||
    ||    Running time : 0.56 minutes                                             ||
    ||                                                                            ||
    || Process BAM file NALM6-ctrlAligned.sortedByCoord.out.bam...                ||
    ||    WARNING: Paired-end reads were found.                                   ||
    ||    Total alignments : 70082894                                             ||
    ||    Successfully assigned alignments : 32230367 (46.0%)                     ||
    ||    Running time : 0.48 minutes                                             ||
    ||                                                                            ||
    || Write the final count table.                                               ||
    || Write the read assignment summary.                                         ||
    ||                                                                            ||
    || Summary of counting results can be found in file "/home/data/cheng/projec  ||
    || t/results/5_final_counts/final_counts.txt.summary"                         ||
    ||                                                                            ||
    \\============================================================================//
    

    下游分析

    four_sample_deg

    Cheng Liangping

    24 十月, 2020

    1 Importing Gene Counts into R/RStudio

    Once the workflow has completed, you can now use the gene count table as an input into DESeq2 for statistical analysis using the R-programming language. It is highly reccomended to use RStudio when writing R code and generating R-related analyses. You can download RStudio for your system here: https://www.rstudio.com/products/rstudio/download/

    1.1 Install required R-libraries

    rm(list = ls())
    options(BioC_mirror="http://mirrors.tuna.tsinghua.edu.cn/bioconductor/")
    options("repos" = c(CRAN="https://mirrors.tuna.tsinghua.edu.cn/CRAN/"))
    options()$repos 
    
    ##                                         CRAN 
    ## "https://mirrors.tuna.tsinghua.edu.cn/CRAN/"
    
    options()$BioC_mirror
    
    ## [1] "http://mirrors.tuna.tsinghua.edu.cn/bioconductor/"
    
    # install.packages("gage")
    # BiocManager::install("org.Hs.eg.db",ask = F,update = F)
    library(DESeq2)
    library(ggplot2)
    library(clusterProfiler)
    library(biomaRt)
    library(ReactomePA)
    library(DOSE)
    library(KEGG.db)
    library(org.Hs.eg.db)
    library(pheatmap)
    library(genefilter)
    library(RColorBrewer)
    library(GO.db)
    library(topGO)
    library(dplyr)
    library(gage)
    library(ggsci)
    

    1.1.1 Import featureCounts output

    One you have an R environment appropriatley set up, you can begin to import the featureCounts table found within the 5_final_counts folder. This tutorial will use DESeq2 to normalize and perform the statistical analysis between sample groups. Be sure to know the full location of the final_counts.txt file generate from featureCounts.

    Note: If you would like to use an example final_counts.txt table, look into the example/ folder.

    # Import gene counts table
    # - skip first row (general command info)
    # - make row names the gene identifiers
    countdata <- read.table("final_counts.txt", header = TRUE, skip = 1, row.names = 1)
    
    # Remove .bam + '..' from column identifiers
    colnames(countdata) <- gsub(".bam", "", colnames(countdata), fixed = T)
    colnames(countdata) <- gsub("Aligned.sortedByCoord.out", "", colnames(countdata), fixed = T)
    colnames(countdata) <- gsub("..", "", colnames(countdata), fixed = T)
    #save(countdata,file = "raw.Rdata")
    # Remove length/char columns
    countdata <- countdata[ ,c(-1:-5)]
    
    # Make sure ID's are correct
    head(countdata)
    
    ##             NALM6.treat RS411.ctrl RS411.treat NALM6.ctrl
    ## DDX11L1              26          5          20         12
    ## WASH7P             1119        206         202        435
    ## MIR6859-1            21          6           4          9
    ## MIR1302-2HG           2          0           3          1
    ## MIR1302-2             0          0           0          0
    ## FAM138A               0          0           0          0
    

    1.1.2 Import metadata text file. The SampleID’s must be the first column.

    # Import metadata file
    # - make row names the matching sampleID's from the countdata
    metadata <- read.delim("metadata.txt", row.names = 1)
    
    # Reorder sampleID's to match featureCounts column order. 
    metadata <- metadata[match(colnames(countdata), metadata$sampleid), ]
    
    # Make sure ID's are correct
    head(metadata)
    
    ##             Group Replicate    sampleid
    ## NALM6.treat Hiexp      Rep2 NALM6.treat
    ## RS411.ctrl  Loexp      Rep1  RS411.ctrl
    ## RS411.treat Loexp      Rep2 RS411.treat
    ## NALM6.ctrl  Hiexp      Rep1  NALM6.ctrl
    

    1.1.3 Make DESeq2 object from counts and metadata

    # - countData : count dataframe
    # - colData : sample metadata in the dataframe with row names as sampleID's
    # - design : The design of the comparisons to use. 
    #            Use (~) before the name of the column variable to compare
    ddsMat <- DESeqDataSetFromMatrix(countData = countdata,
                                     colData = metadata,
                                     design = ~Group)
    
    # Find differential expressed genes
    ddsMat <- DESeq(ddsMat)
    

    1.1.4 Get basic statisics about the number of significant genes

    # Get results from testing with FDR adjust pvalues
    results <- results(ddsMat, pAdjustMethod = "fdr", alpha = 0.05)
    
    # Generate summary of testing. 
    summary(results)
    
    ## 
    ## out of 37196 with nonzero total read count
    ## adjusted p-value < 0.05
    ## LFC > 0 (up)       : 2345, 6.3%
    ## LFC < 0 (down)     : 1530, 4.1%
    ## outliers [1]       : 0, 0%
    ## low counts [2]     : 11169, 30%
    ## (mean count < 4)
    ## [1] see 'cooksCutoff' argument of ?results
    ## [2] see 'independentFiltering' argument of ?results
    
    # Check directionality of the log2 fold changes
    ## Log2 fold change is set as (Loexp / Hiexp)
    ## Postive fold changes = Increased in Loexp
    ## Negative fold changes = Decreased in Loexp
    mcols(results, use.names = T)
    
    ## DataFrame with 6 rows and 2 columns
    ##                        type                                  description
    ##                 <character>                                  <character>
    ## baseMean       intermediate    mean of normalized counts for all samples
    ## log2FoldChange      results log2 fold change (MLE): Group Loexp vs Hiexp
    ## lfcSE               results         standard error: Group Loexp vs Hiexp
    ## stat                results         Wald statistic: Group Loexp vs Hiexp
    ## pvalue              results      Wald test p-value: Group Loexp vs Hiexp
    ## padj                results                        fdr adjusted p-values
    

    1.2 Annotate gene symbols

    After alignment and summarization, we only have the annotated gene symbols. To get more information about significant genes, we can use annoated databases to convert gene symbols to full gene names and entrez ID’s for further analysis.

    1.2.1 Gather gene annotation information

    # Mouse genome database (Select the correct one)
    library(org.Hs.eg.db) 
    
    # Add gene full name
    results$description <- mapIds(x = org.Hs.eg.db,
                                  keys = row.names(results),
                                  column = "GENENAME",
                                  keytype = "SYMBOL",
                                  multiVals = "first")
    
    # Add gene symbol
    results$symbol <- row.names(results)
    
    # Add ENTREZ ID
    results$entrez <- mapIds(x = org.Hs.eg.db,
                             keys = row.names(results),
                             column = "ENTREZID",
                             keytype = "SYMBOL",
                             multiVals = "first")
    
    # Add ENSEMBL
    results$ensembl <- mapIds(x = org.Hs.eg.db,
                              keys = row.names(results),
                              column = "ENSEMBL",
                              keytype = "SYMBOL",
                              multiVals = "first")
    
    # Subset for only significant genes (q < 0.05)
    results_sig <- subset(results, padj < 0.05)
    head(results_sig)
    
    ## log2 fold change (MLE): Group Loexp vs Hiexp 
    ## Wald test p-value: Group Loexp vs Hiexp 
    ## DataFrame with 6 rows and 10 columns
    ##            baseMean log2FoldChange     lfcSE      stat      pvalue        padj
    ##           <numeric>      <numeric> <numeric> <numeric>   <numeric>   <numeric>
    ## MTND1P23  2424.6057       -4.11145  0.678250  -6.06185 1.34561e-09 4.39978e-08
    ## MTND2P28  1813.7288        3.75228  0.738809   5.07882 3.79791e-07 8.29959e-06
    ## MTCO1P12  6187.1454       -3.29924  0.634548  -5.19936 1.99981e-07 4.56171e-06
    ## MTCO2P12   169.0384       -2.08444  0.773877  -2.69351 7.07044e-03 4.79849e-02
    ## MXRA8      725.5861        2.58245  0.664147   3.88837 1.00920e-04 1.26220e-03
    ## LINC01770   54.9444        9.28692  1.703909   5.45036 5.02681e-08 1.27891e-06
    ##                                           description      symbol      entrez
    ##                                           <character> <character> <character>
    ## MTND1P23                         MT-ND1 pseudogene 23    MTND1P23   100887749
    ## MTND2P28                         MT-ND2 pseudogene 28    MTND2P28   100652939
    ## MTCO1P12                         MT-CO1 pseudogene 12    MTCO1P12   107075141
    ## MTCO2P12                         MT-CO2 pseudogene 12    MTCO2P12   107075310
    ## MXRA8                  matrix remodeling associated 8       MXRA8       54587
    ## LINC01770 long intergenic non-protein coding RNA 1770   LINC01770   102724312
    ##                   ensembl
    ##               <character>
    ## MTND1P23               NA
    ## MTND2P28               NA
    ## MTCO1P12               NA
    ## MTCO2P12               NA
    ## MXRA8     ENSG00000162576
    ## LINC01770              NA
    

    1.2.2 Write all the important results to .txt files

    # Write normalized gene counts to a .txt file
    write.table(x = as.data.frame(counts(ddsMat), normalized = T), 
                file = 'normalized_counts.txt', 
                sep = '\t', 
                quote = F,
                col.names = NA)
    
    # Write significant normalized gene counts to a .txt file
    write.table(x = counts(ddsMat[row.names(results_sig)], normalized = T), 
                file = 'normalized_counts_significant.txt', 
                sep = '\t', 
                quote = F, 
                col.names = NA)
    
    # Write the annotated results table to a .txt file
    write.table(x = as.data.frame(results), 
                file = "results_gene_annotated.txt", 
                sep = '\t', 
                quote = F,
                col.names = NA)
    
    # Write significant annotated results table to a .txt file
    write.table(x = as.data.frame(results_sig), 
                file = "results_gene_annotated_significant.txt", 
                sep = '\t', 
                quote = F,
                col.names = NA)
    

    1.3 Plotting Gene Expression Data

    There are multiple ways to plot gene expression data. Below we are only listing a few popular methods, but there are many more resources (Going Further) that will walk through different R commands/packages for plotting.

    1.3.1 PCA plot

    # Convert all samples to rlog
    ddsMat_rlog <- rlog(ddsMat, blind = FALSE)
    
    # Plot PCA by column variable
    plotPCA(ddsMat_rlog, intgroup = "Group", ntop = 500) +
      theme_bw() + # remove default ggplot2 theme
      geom_point(size = 5) + # Increase point size
      scale_y_continuous(limits = c(-5, 5)) + # change limits to fix figure dimensions
      ggtitle(label = "Principal Component Analysis (PCA)", 
              subtitle = "Top 500 most variable genes") 
    
    image.png

    1.3.2 Heatmap

    # Convert all samples to rlog
    ddsMat_rlog <- rlog(ddsMat, blind = FALSE)
    
    # Gather 30 significant genes and make matrix
    mat <- assay(ddsMat_rlog[row.names(results_sig)])[1:40, ]
    
    # Choose which column variables you want to annotate the columns by.
    annotation_col = data.frame(
      Group = factor(colData(ddsMat_rlog)$Group), 
      Replicate = factor(colData(ddsMat_rlog)$Replicate),
      row.names = colData(ddsMat_rlog)$sampleid
    )
    
    # Specify colors you want to annotate the columns by.
    ann_colors = list(
      Group = c(Loexp = "lightblue", Hiexp = "darkorange"),
      Replicate = c(Rep1 = "darkred", Rep2 = "forestgreen")
    )
    
    # Make Heatmap with pheatmap function.
    ## See more in documentation for customization
    pheatmap(mat = mat, 
             color = colorRampPalette(brewer.pal(9, "YlOrBr"))(255), 
             scale = "row", # Scale genes to Z-score (how many standard deviations)
             annotation_col = annotation_col, # Add multiple annotations to the samples
             annotation_colors = ann_colors,# Change the default colors of the annotations
             fontsize = 6.5, # Make fonts smaller
             cellwidth = 55, # Make the cells wider
             show_colnames = F)
    
    image.png

    1.3.3 Volcano Plot

    # Gather Log-fold change and FDR-corrected pvalues from DESeq2 results
    ## - Change pvalues to -log10 (1.3 = 0.05)
    data <- data.frame(gene = row.names(results),
                       pval = -log10(results$padj), 
                       lfc = results$log2FoldChange)
    
    # Remove any rows that have NA as an entry
    data <- na.omit(data)
    
    # Color the points which are up or down
    ## If fold-change > 0 and pvalue > 1.3 (Increased significant)
    ## If fold-change < 0 and pvalue > 1.3 (Decreased significant)
    data <- mutate(data, color = case_when(data$lfc > 0 & data$pval > 1.3 ~ "Increased",
                                           data$lfc < 0 & data$pval > 1.3 ~ "Decreased",
                                           data$pval < 1.3 ~ "nonsignificant"))
    
    # Make a basic ggplot2 object with x-y values
    vol <- ggplot(data, aes(x = lfc, y = pval, color = color))
    
    # Add ggplot2 layers
    vol +   
      ggtitle(label = "Volcano Plot", subtitle = "Colored by fold-change direction") +
      geom_point(size = 2.5, alpha = 0.8, na.rm = T) +
      scale_color_manual(name = "Directionality",
                         values = c(Increased = "#008B00", Decreased = "#CD4F39", nonsignificant = "darkgray")) +
      theme_bw(base_size = 14) + # change overall theme
      theme(legend.position = "right") + # change the legend
      xlab(expression(log[2]("Loexp" / "Hiexp"))) + # Change X-Axis label
      ylab(expression(-log[10]("adjusted p-value"))) + # Change Y-Axis label
      geom_hline(yintercept = 1.3, colour = "darkgrey") + # Add p-adj value cutoff line
      scale_y_continuous(trans = "log1p") # Scale yaxis due to large p-values
    
    image.png

    1.3.4 MA Plot

    https://en.wikipedia.org/wiki/MA_plot

    plotMA(results, ylim = c(-5, 5))
    
    image.png

    1.3.5 Plot Dispersions

    plotDispEsts(ddsMat)
    
    image.png

    1.3.6 Single gene plot

    # Convert all samples to rlog
    ddsMat_rlog <- rlog(ddsMat, blind = FALSE)
    
    # Get gene with highest expression
    top_gene <- rownames(results)[which.min(results$log2FoldChange)]
    
    # Plot single gene
    plotCounts(dds = ddsMat, 
               gene = top_gene, 
               intgroup = "Group", 
               normalized = T, 
               transform = T)
    
    image.png

    1.4 Finding Pathways from Differential Expressed Genes

    Pathway enrichment analysis is a great way to generate overall conclusions based on the individual gene changes. Sometimes individiual gene changes are overwheling and are difficult to interpret. But by analyzing the pathways the genes fall into, we can gather a top level view of gene responses. You can find more information about clusterProfiler here: http://bioconductor.org/packages/release/bioc/vignettes/clusterProfiler/inst/doc/clusterProfiler.html

    1.4.1 Set up matrix to take into account EntrezID’s and fold changes for each gene

    # Remove any genes that do not have any entrez identifiers
    results_sig_entrez <- subset(results_sig, is.na(entrez) == FALSE)
    
    # Create a matrix of gene log2 fold changes
    gene_matrix <- results_sig_entrez$log2FoldChange
    
    # Add the entrezID's as names for each logFC entry
    names(gene_matrix) <- results_sig_entrez$entrez
    
    # View the format of the gene matrix
    ##- Names = ENTREZ ID
    ##- Values = Log2 Fold changes
    head(gene_matrix)
    
    ## 100887749 100652939 107075141 107075310     54587 102724312 
    ## -4.111451  3.752277 -3.299241 -2.084445  2.582450  9.286916
    
    gene_matrix=sort(gene_matrix,decreasing = T)
    

    1.4.2 Enrich genes using the KEGG database

    kegg_enrich <- enrichKEGG(gene = names(gene_matrix),
                              organism = 'human',
                              pvalueCutoff = 0.05, 
                              qvalueCutoff = 0.10)
    kegg_enrich <- setReadable(kegg_enrich, org.Hs.eg.db, keyType = "ENTREZID")
    # Plot results
    barplot(kegg_enrich, 
            drop = TRUE, 
            showCategory = 10, 
            title = "KEGG Enrichment Pathways",
            font.size = 8)
    
    image.png

    1.4.3 Enrich genes using the Gene Onotlogy

    go_enrich <- enrichGO(gene = names(gene_matrix),
                          OrgDb = 'org.Hs.eg.db', 
                          readable = T,
                          ont = "BP",
                          pvalueCutoff = 0.05, 
                          qvalueCutoff = 0.10)
    
    # Plot results
    barplot(go_enrich, 
            drop = TRUE, 
            showCategory = 10, 
            title = "GO Biological Pathways",
            font.size = 8)
    
    image.png

    1.5 Plotting KEGG Pathways

    Pathview is a package that can take KEGG identifier and overlay fold changes to the genes which are found to be significantly different. Pathview also works with other organisms found in the KEGG database and can plot any of the KEGG pathways for the particular organism.

    # Load pathview
    library(pathview)
    
    ## ##############################################################################
    ## Pathview is an open source software package distributed under GNU General
    ## Public License version 3 (GPLv3). Details of GPLv3 is available at
    ## http://www.gnu.org/licenses/gpl-3.0.html. Particullary, users are required to
    ## formally cite the original Pathview paper (not just mention it) in publications
    ## or products. For details, do citation("pathview") within R.
    ## 
    ## The pathview downloads and uses KEGG data. Non-academic uses may require a KEGG
    ## license agreement (details at http://www.kegg.jp/kegg/legal.html).
    ## ##############################################################################
    
    # Plot specific KEGG pathways (with fold change) 
    ## pathway.id : KEGG pathway identifier
    pathview(gene.data = gene_matrix, 
             pathway.id = "00020", 
             species = "hsa")
    
    ## 'select()' returned 1:1 mapping between keys and columns
    
    ## Info: Working in directory /Users/cheng/Downloads/TYL1/20201023
    
    ## Info: Writing image file hsa00020.pathview.png
    

    1.6 疾病通路

    有一显著差异基因富集到一个已经疾病通路: 相关疾病为:Lewy body dementia。

    x <- enrichDO(gene          = names(gene_matrix),
                  ont           = "DO",
                  pvalueCutoff  = 0.05,
                  pAdjustMethod = "BH",
                  minGSSize     = 5,
                  maxGSSize     = 500,
                  qvalueCutoff  = 0.05,
                  readable      = FALSE)
    x <- setReadable(x, org.Hs.eg.db, keyType = "ENTREZID")
    head(x)
    
    ##                        ID                            Description GeneRatio
    ## DOID:0060049 DOID:0060049 autoimmune disease of urogenital tract   26/1207
    ## DOID:12236     DOID:12236              primary biliary cirrhosis   26/1207
    ## DOID:1037       DOID:1037                 lymphoblastic leukemia   99/1207
    ## DOID:0060100 DOID:0060100          musculoskeletal system cancer   98/1207
    ## DOID:9119       DOID:9119                 acute myeloid leukemia   33/1207
    ## DOID:16           DOID:16           integumentary system disease   88/1207
    ##               BgRatio       pvalue    p.adjust      qvalue
    ## DOID:0060049  73/8007 1.097364e-05 0.005426588 0.004509630
    ## DOID:12236    73/8007 1.097364e-05 0.005426588 0.004509630
    ## DOID:1037    443/8007 1.839793e-05 0.005426588 0.004509630
    ## DOID:0060100 439/8007 2.127302e-05 0.005426588 0.004509630
    ## DOID:9119    107/8007 2.550088e-05 0.005426588 0.004509630
    ## DOID:16      394/8007 5.539968e-05 0.009824211 0.008164164
    ##                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       geneID
    ## DOID:0060049                                                                                                                                                                                                                                                                                                                                                                                                                                   SNCA/CAV1/NOS2/ICOS/ABCB4/PTPN13/IL7R/ENTPD1/ITGAL/TGFBR2/TNFSF13/TNFSF13B/TLR4/FN1/TNFSF10/TNFSF9/TGFB1/HLA-DRB1/FAS/ICAM1/HGF/CXCL10/CD27/CNR1/FCRL3/ENTPD2
    ## DOID:12236                                                                                                                                                                                                                                                                                                                                                                                                                                     SNCA/CAV1/NOS2/ICOS/ABCB4/PTPN13/IL7R/ENTPD1/ITGAL/TGFBR2/TNFSF13/TNFSF13B/TLR4/FN1/TNFSF10/TNFSF9/TGFB1/HLA-DRB1/FAS/ICAM1/HGF/CXCL10/CD27/CNR1/FCRL3/ENTPD2
    ## DOID:1037    NRP1/FLT3/CD44/ERG/CRY1/LAIR1/HSPB1/ADRB2/SLIT2/BLACE/FCMR/ZAP70/FOSL2/IL24/TNFRSF11A/FMOD/NOS2/WT1/CDX2/BGN/IL15/CD34/RAG1/NT5E/F13A1/CSPG4/IGFBP2/MDK/IRF4/IL1B/PTPN6/FLT4/ANPEP/SLC29A2/SDC1/CD33/RUNX1/ZFP36L1/MEF2C/TP73/ARID5B/TNFSF13/FCGR2A/TNFSF13B/LILRB1/CD9/EPHB4/JAK3/CDK6/LMO2/LEF1/CISH/RB1/BCL2/RAPGEF3/CCND3/MYB/DMD/ZMIZ1/CDKN1B/TNFRSF13C/POU2AF1/IGHD/TNFSF10/TGFB1/STAT1/HLA-DRB1/IRF8/BACH2/FAS/CD40/PDE4B/CD83/FCRL5/HGF/LAMA5/FCER2/HLF/ASNS/PRKCB/FCRL2/TNFRSF8/IKZF3/PEG10/BCL2A1/TP63/BIRC3/HES1/TTC12/EFNA5/RHD/FCRL3/MME/CDKN2B/TNFRSF10A/AICDA/MLLT3/CCL22/CDKN2A
    ## DOID:0060100                       CCN2/PDPN/CD44/ERG/HMGA2/HSPB1/NOG/PROM1/NDRG1/SPRY1/ANGPT1/SLIT2/TIMP1/BMP2/ADAM28/CAV1/LPAR1/F2RL3/FBN2/S100A6/TNFRSF11A/NOS2/HPSE/WT1/NES/CDH11/SPP1/CD34/FSCN1/SALL2/PDGFA/RUNX2/F2R/MCAM/PDGFRB/IL1B/HBEGF/JUP/LGALS1/PLAU/ERBB2/PLAUR/TLE1/KLRK1/CD33/PRUNE2/S100A4/CCL5/PGF/CREB3L1/TP73/TNFSF13B/CD9/CD99/FBN1/DUSP1/FN1/RB1/CAPN2/BCL2/DMD/RASSF1/CDKN1B/IGF2BP2/ASS1/FLI1/TNFRSF10B/PRKCA/URGCP/DYRK1B/OBSCN/TGFB1/LRP1/GLI1/ITGB3/ID1/FAS/ICAM1/HGF/UTS2R/SMO/PRKCG/PAX2/CDH1/TP63/ACKR3/EGFR/IGFBP6/DCN/LUM/GFAP/DNASE1L3/EXT1/CDKN2B/WNT5A/UCHL1/MTAP/CDKN2A
    ## DOID:9119                                                                                                                                                                                                                                                                                                                                                                                                         NRP1/MEIS1/CD96/PLA2G4A/CAV1/SALL4/LYZ/WT1/CDX2/RAG1/IGFBP2/IL1B/PLAUR/SELL/ITGAL/RUNX1/MGMT/IL3RA/LMO2/RB1/BCL2/CDKN1B/LYL1/IRF8/FAS/CBFA2T3/SKI/RUNX3/CAMP/CDKN2B/TNFRSF10A/KCNH2/CDKN2A
    ## DOID:16                                                                PDPN/LAMA3/HSPB1/HR/ADRB2/EDA2R/ADAM33/CCL28/FLG/RIN2/SLC16A2/HRH4/TIMP1/VIM/CAV1/CD93/IL24/SERPING1/GHR/CCL1/NLRP3/IL15/CD34/NPY/COL6A5/IL1RL1/IL9R/RETN/F2R/EPX/IRAK3/IL1B/XPNPEP2/IL7R/TBC1D4/PLAU/PLAUR/SELL/ANPEP/SLC29A2/COL7A1/NR3C2/GPX1/NTRK1/TNFRSF1B/CCL5/PGF/TNFSF13/TNFSF13B/TLR4/NOS3/BCL2/SLC29A3/NOP53/HLA-DQA1/TGFB1/HLA-DRB1/ITGB3/ITGA6/FAS/CD40/TNFSF8/ALOX5AP/ICAM1/CXCL10/LAMA5/CYP1A2/C3/ADM2/CCL3L3/CAMP/BCL2A1/TP63/CCL17/EGFR/FBLN5/LMNA/CX3CL1/ALOX5/APP/TNFRSF14/FCRL3/ST14/MME/TRPC1/CDKN2B/CCL22/CDKN2A
    ##              Count
    ## DOID:0060049    26
    ## DOID:12236      26
    ## DOID:1037       99
    ## DOID:0060100    98
    ## DOID:9119       33
    ## DOID:16         88
    

    1.7 GO数据可视化:

    1.7.1 barplot、dotplot

    用散点图展示富集到的GO terms

    library(enrichplot)
    library(clusterProfiler)
    library(patchwork)
    #(1)条带图
    barplot(go_enrich,showCategory=10)
    
    image.png
    #(2)气泡图
    dotplot(go_enrich)
    
    image.png

    1.7.1.1 GO有向无环图

    调用topGO来实现GO有向无环图的绘制,矩形代表富集到的top10个GO terms, 颜色从黄色过滤到红色,对应p值从大到小。

    plotGOgraph(go_enrich)
    
    image.png
    ## $dag
    ## A graphNEL graph with directed edges
    ## Number of Nodes = 48 
    ## Number of Edges = 83 
    ## 
    ## $complete.dag
    ## [1] "A graph with 48 nodes."
    

    1.7.1.2 emapplot、goplot、cnetplot

    #Gene-Concept Network
    cnetplot(go_enrich, categorySize="pvalue", foldChange=names(gene_matrix),colorEdge = TRUE)
    
    image.png
    cnetplot(go_enrich, foldChange=names(gene_matrix), circular = TRUE, colorEdge = TRUE)
    
    image.png
    #Enrichment Map
    emapplot(go_enrich)
    
    image.png
    #(4)展示通路关系
    goplot(go_enrich)
    
    image.png
    #(5)Heatmap-like functional classification
    heatplot(go_enrich,foldChange = gene_matrix)
    
    image.png
    #太多基因就会糊。可通过调整比例或者减少基因来控制。
    

    1.7.1.3 04.upsetplot

    upsetplot(go_enrich) 
    
    image.png

    1.7.2 用所有有entrez的基因做GSEA分析

    # Remove any genes that do not have any entrez identifiers
    results_entrez <- subset(results, is.na(entrez) == FALSE)
    
    # Create a matrix of gene log2 fold changes
    gene_matrix <- results_entrez$log2FoldChange
    
    # Add the entrezID's as names for each logFC entry
    names(gene_matrix) <- results_entrez$entrez
    
    gene_matrix=sort(gene_matrix,decreasing = T)
    ego_GSE_bp <- gseGO(
          geneList     = gene_matrix,
          OrgDb        = org.Hs.eg.db,
          ont          = "MF",
          nPerm        = 1000,
          minGSSize    = 100,
          maxGSSize    = 500,
          pvalueCutoff = 0.05,
          verbose      = FALSE)
    

    1.7.3 ridgeplot

    #gsea
    ridgeplot(ego_GSE_bp)
    
    image.png

    1.7.4 gseaplot、gseaplot2及多个geneset验证结果

    #gesa图
    p15 <- gseaplot(ego_GSE_bp, geneSetID = 1, by = "runningScore",
                   title = ego_GSE_bp$Description[1])
    p16 <- gseaplot(ego_GSE_bp, geneSetID = 1, by = "preranked", 
                   title = ego_GSE_bp$Description[1])
    p17 <- gseaplot(ego_GSE_bp, geneSetID = 1, title = ego_GSE_bp$Description[1])
    
    #还有一种展示方式
    p18=gseaplot2(ego_GSE_bp, geneSetID = 1, title = ego_GSE_bp$Description[1])
    
    cowplot::plot_grid(p15, p16, p17,p18, ncol=2, labels=LETTERS[1:6])
    
    image.png
    #多条、加table(加p值)
    gseaplot2(ego_GSE_bp, geneSetID = 1:3, pvalue_table = TRUE)
    
    image.png
    #上下3联(多个geneset验证结果)
    
    pp <- lapply(1:3, function(i) {
        anno <- ego_GSE_bp[i, c("NES", "pvalue", "p.adjust")]
        lab <- paste0(names(anno), "=",  round(anno, 3), collapse="\n")
    
        gsearank(ego_GSE_bp, i, ego_GSE_bp[i, 2]) + xlab(NULL) +ylab(NULL) +
            annotate("text", 0, ego_GSE_bp[i, "enrichmentScore"] * .9, label = lab, hjust=0, vjust=0)
    })
    plot_grid(plotlist=pp, ncol=1)
    
    image.png

    1.7.5 KEGG数据GSEA分析

    kk_gse <- gseKEGG(geneList     = gene_matrix,
                      organism     = 'hsa',
                      nPerm        = 1000,
                      minGSSize    = 120,
                      pvalueCutoff = 0.9,
                      verbose      = FALSE)
    #使用了所有基因进行KEGG的GSEA分析发现有上调16个通路得到验证,下调0个通路显著。
    down_kegg<-kk_gse[kk_gse$pvalue<0.1 & kk_gse$enrichmentScore < 0,];down_kegg$group=-1
    up_kegg<-kk_gse[kk_gse$pvalue<0.05 & kk_gse$enrichmentScore > 0,];up_kegg$group=1
    #(4)可视化
    source("kegg_plot_function.R")
    g_kegg <- kegg_plot(up_kegg,down_kegg)
    g_kegg
    
    image.png

    1.8 查看kegg富集通路及差异基因可视化

    1.8.1 Upsetplot for gene set enrichment analysis.

    library(enrichplot)
    library(clusterProfiler)
    upsetplot(kegg_enrich) 
    
    image.png

    1.8.2 可通过浏览器打开kegg网站查看具体信号通路的信息

    head(kegg_enrich)[,1:6] 
    
    ##                ID                                  Description GeneRatio
    ## hsa04015 hsa04015                       Rap1 signaling pathway   56/1085
    ## hsa04060 hsa04060       Cytokine-cytokine receptor interaction   68/1085
    ## hsa04640 hsa04640                   Hematopoietic cell lineage   30/1085
    ## hsa04390 hsa04390                      Hippo signaling pathway   39/1085
    ## hsa05146 hsa05146                                   Amoebiasis   28/1085
    ## hsa04672 hsa04672 Intestinal immune network for IgA production   17/1085
    ##           BgRatio       pvalue     p.adjust
    ## hsa04015 210/8076 1.830708e-07 0.0000583996
    ## hsa04060 295/8076 3.267347e-06 0.0005211418
    ## hsa04640  99/8076 8.949786e-06 0.0009516606
    ## hsa04390 157/8076 7.554828e-05 0.0060249750
    ## hsa05146 102/8076 1.251732e-04 0.0066839043
    ## hsa04672  49/8076 1.257161e-04 0.0066839043
    
    #browseKEGG(kk.diff, 'hsa04015')
    dotplot(kegg_enrich)
    
    image.png
    barplot(kegg_enrich,showCategory=10)
    
    image.png
    cnetplot(kegg_enrich, categorySize="pvalue", foldChange=gene_matrix,colorEdge = TRUE)
    
    image.png
    cnetplot(kegg_enrich, foldChange=gene_matrix, circular = TRUE, colorEdge = TRUE)
    
    image.png
    emapplot(kegg_enrich)
    
    image.png
    heatplot(kegg_enrich,foldChange = gene_matrix)
    
    image.png

    1.8.3 Going further with RNAseq analysis

    You can the links below for a more in depth walk through of RNAseq analysis using R:


    1.8.3.1 Citations:

    1. Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

    2. Martin, Marcel. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, [S.l.], v. 17, n. 1, p. pp. 10-12, may. 2011. ISSN 2226-6089. Available at: http://journal.embnet.org/index.php/embnetjournal/article/view/200. doi:http://dx.doi.org/10.14806/ej.17.1.200.

    3. Kopylova E., Noé L. and Touzet H., “SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data”, Bioinformatics (2012), doi: 10.1093/bioinformatics/bts611

    4. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. doi:10.1093/bioinformatics/bts635.

    5. Lassmann et al. (2010) “SAMStat: monitoring biases in next generation sequencing data.” Bioinformatics doi:10.1093/bioinformatics/btq614 [PMID: 21088025]

    6. Liao Y, Smyth GK and Shi W (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7):923-30.

    7. Love MI, Huber W and Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, pp. 550.

    8. Yu G, Wang L, Han Y and He Q (2012). “clusterProfiler: an R package for comparing biological themes among gene clusters.” OMICS: A Journal of Integrative Biology, 16(5), pp. 284-287.

    9. Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller. “MultiQC: Summarize analysis results for multiple tools and samples in a single report” Bioinformatics (2016). doi: 10.1093/bioinformatics/btw354. PMID: 27312411

    相关文章

      网友评论

        本文标题:2020-10-24 RNAseq 从fq开始分析全流程

        本文链接:https://www.haomeiwen.com/subject/ffzimktx.html