美文网首页
大师兄的Python源码学习笔记(六): Dict对象

大师兄的Python源码学习笔记(六): Dict对象

作者: superkmi | 来源:发表于2021-03-02 11:30 被阅读0次

大师兄的Python源码学习笔记(五): List对象
大师兄的Python源码学习笔记(七): Set对象

一、Python中的字典

  • Python中的dict对象是由PyDictObject实现的。
  • 由于dict在Python被大量使用,对效率要求极高,所以没有如C中的map一样,采用平衡二叉树,而是采用了哈希表(hash table)
  • 而解决哈希碰撞的方法采用了开放寻址法
  • 以上内容可以参考我的另一篇文章大师兄的数据结构学习笔记(十四): 词典
1. Python中的词条(entry)
  • 在字典中包含的每一个键(key)值(value)对称为一个词条(entry)
  • Python中的entryPyDictEntry实现。
Objects\dict-common.h

typedef struct {
   /* Cached hash code of me_key. */
   Py_hash_t me_hash;
   PyObject *me_key;
   PyObject *me_value; /* This field is only meaningful for combined tables */
} PyDictKeyEntry;
  • me_hash储存哈希值。
  • me_key储存键值(key)。
  • me_value储存对应的值(value)。
  • 由于keyvalue全都是PyObject,所以理论上放什么都可以。
  • PyDictObject生存变化中,entry会在Unused、Active、Dummy和Pending四种不同状态间切换:
状态 条件
Unused me_key和me_value为NULL。
Active me_key和me_value都不为NULL。
Dummy me_key和me_value被删除时,原因是开放寻址法的搜索方式。
Pending me_key不为NULL而me_value为NULL。
2. 字典分类
  • 在Python3.4后,字典被分为分离字典(split-table dictionaries)联合字典(combined-table dictonaries)两类。
  • 分离字典用来保存对象的__dict__属性,它们的键表被缓存在类型属性中,并允许所有该类型的实例共享值。
  • 联合字典直接通过 dict 內建函数与{}生成,大部分字典都是联合字典
3. 关联容器
  • 所谓容器就是PyDictObject对象,一个PyDictObject对象是一堆词条(entry)的集合。
Include\dictobject.h

typedef struct _dictkeysobject PyDictKeysObject;

/* The ma_values pointer is NULL for a combined table
 * or points to an array of PyObject* for a split table
 */
typedef struct {
    PyObject_HEAD

    /* Number of items in the dictionary */
    Py_ssize_t ma_used;

    /* Dictionary version: globally unique, value change each time
       the dictionary is modified */
    uint64_t ma_version_tag;

    PyDictKeysObject *ma_keys;

    /* If ma_values is NULL, the table is "combined": keys and values
       are stored in ma_keys.

       If ma_values is not NULL, the table is splitted:
       keys are stored in ma_keys and values are stored in ma_values */
    PyObject **ma_values;
} PyDictObject;
  • ma_used用于维护处于Active状态词条数量。
  • ma_version_tag是全局唯一的标识,随字典每次的改变而改变。
  • ma_keys指向PyDictKeysObject
  • 如果ma_values为空,这是一个联合字典,键和值储存在ma_keys
  • 如果ma_values不为空,这是一个分离字典,键保存在ma_keys,值保存在ma_values
Objects\dict-common.h

/* See dictobject.c for actual layout of DictKeysObject */
struct _dictkeysobject {
    Py_ssize_t dk_refcnt;

    /* Size of the hash table (dk_indices). It must be a power of 2. */
    Py_ssize_t dk_size;

    /* Function to lookup in the hash table (dk_indices):

       - lookdict(): general-purpose, and may return DKIX_ERROR if (and
         only if) a comparison raises an exception.

       - lookdict_unicode(): specialized to Unicode string keys, comparison of
         which can never raise an exception; that function can never return
         DKIX_ERROR.

       - lookdict_unicode_nodummy(): similar to lookdict_unicode() but further
         specialized for Unicode string keys that cannot be the <dummy> value.

       - lookdict_split(): Version of lookdict() for split tables. */
    dict_lookup_func dk_lookup;

    /* Number of usable entries in dk_entries. */
    Py_ssize_t dk_usable;

    /* Number of used entries in dk_entries. */
    Py_ssize_t dk_nentries;

    /* Actual hash table of dk_size entries. It holds indices in dk_entries,
       or DKIX_EMPTY(-1) or DKIX_DUMMY(-2).

       Indices must be: 0 <= indice < USABLE_FRACTION(dk_size).

       The size in bytes of an indice depends on dk_size:

       - 1 byte if dk_size <= 0xff (char*)
       - 2 bytes if dk_size <= 0xffff (int16_t*)
       - 4 bytes if dk_size <= 0xffffffff (int32_t*)
       - 8 bytes otherwise (int64_t*)

       Dynamically sized, SIZEOF_VOID_P is minimum. */
    char dk_indices[];  /* char is required to avoid strict aliasing. */

    /* "PyDictKeyEntry dk_entries[dk_usable];" array follows:
       see the DK_ENTRIES() macro */
};
  • dk_refcnt是引用计数。
  • dk_size是哈希表的大小,必须是2的倍数。
  • dk_lookup是用于查找哈希值的函数。
  • dk_usable是可用的词条数。
  • dk_nentries已经使用的词条数。
  • dk_indices[]是已经存入的词条。
4.字典的类型对象
  • PyDictObject的类型对象为PyDict_Type
Objects\dictobject.c

PyTypeObject PyDict_Type = {
    PyVarObject_HEAD_INIT(&PyType_Type, 0)
    "dict",
    sizeof(PyDictObject),
    0,
    (destructor)dict_dealloc,                   /* tp_dealloc */
    0,                                          /* tp_print */
    0,                                          /* tp_getattr */
    0,                                          /* tp_setattr */
    0,                                          /* tp_reserved */
    (reprfunc)dict_repr,                        /* tp_repr */
    0,                                          /* tp_as_number */
    &dict_as_sequence,                          /* tp_as_sequence */
    &dict_as_mapping,                           /* tp_as_mapping */
    PyObject_HashNotImplemented,                /* tp_hash */
    0,                                          /* tp_call */
    0,                                          /* tp_str */
    PyObject_GenericGetAttr,                    /* tp_getattro */
    0,                                          /* tp_setattro */
    0,                                          /* tp_as_buffer */
    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC |
        Py_TPFLAGS_BASETYPE | Py_TPFLAGS_DICT_SUBCLASS,         /* tp_flags */
    dictionary_doc,                             /* tp_doc */
    dict_traverse,                              /* tp_traverse */
    dict_tp_clear,                              /* tp_clear */
    dict_richcompare,                           /* tp_richcompare */
    0,                                          /* tp_weaklistoffset */
    (getiterfunc)dict_iter,                     /* tp_iter */
    0,                                          /* tp_iternext */
    mapp_methods,                               /* tp_methods */
    0,                                          /* tp_members */
    0,                                          /* tp_getset */
    0,                                          /* tp_base */
    0,                                          /* tp_dict */
    0,                                          /* tp_descr_get */
    0,                                          /* tp_descr_set */
    0,                                          /* tp_dictoffset */
    dict_init,                                  /* tp_init */
    PyType_GenericAlloc,                        /* tp_alloc */
    dict_new,                                   /* tp_new */
    PyObject_GC_Del,                            /* tp_free */
};

二、字典的创建

  • 创建字典从_PyDict_NewPresized开始,该函数的作用是生成并初始化一个字典。
Objects\dictobject.c

PyObject *
_PyDict_NewPresized(Py_ssize_t minused)
{
    const Py_ssize_t max_presize = 128 * 1024;
    Py_ssize_t newsize;
    PyDictKeysObject *new_keys;

    /* There are no strict guarantee that returned dict can contain minused
     * items without resize.  So we create medium size dict instead of very
     * large dict or MemoryError.
     */
    if (minused > USABLE_FRACTION(max_presize)) {
        newsize = max_presize;
    }
    else {
        Py_ssize_t minsize = ESTIMATE_SIZE(minused);
        newsize = PyDict_MINSIZE;
        while (newsize < minsize) {
            newsize <<= 1;
        }
    }
    assert(IS_POWER_OF_2(newsize));

    new_keys = new_keys_object(newsize);
    if (new_keys == NULL)
        return NULL;
    return new_dict(new_keys, NULL);
}
  • 首先用一个中间值作为计算字典容量,并计算出字典的实际容量。
   const Py_ssize_t max_presize = 128 * 1024;
   Py_ssize_t newsize;
   PyDictKeysObject *new_keys;

   if (minused > USABLE_FRACTION(max_presize)) {
       newsize = max_presize;
   }
   else {
       Py_ssize_t minsize = ESTIMATE_SIZE(minused);
       newsize = PyDict_MINSIZE;
       while (newsize < minsize) {
           newsize <<= 1;
       }
   }
  • 之后调用了new_keys_object初始化一个PyDictKeysObject,再生成并返回一个PyDictObject
Objects\dictobject.c

static PyDictKeysObject *new_keys_object(Py_ssize_t size)
{
    PyDictKeysObject *dk;
    Py_ssize_t es, usable;

    assert(size >= PyDict_MINSIZE);
    assert(IS_POWER_OF_2(size));

    usable = USABLE_FRACTION(size);
    if (size <= 0xff) {
        es = 1;
    }
    else if (size <= 0xffff) {
        es = 2;
    }
#if SIZEOF_VOID_P > 4
    else if (size <= 0xffffffff) {
        es = 4;
    }
#endif
    else {
        es = sizeof(Py_ssize_t);
    }

    if (size == PyDict_MINSIZE && numfreekeys > 0) {
        dk = keys_free_list[--numfreekeys];
    }
    else {
        dk = PyObject_MALLOC(sizeof(PyDictKeysObject)
                             + es * size
                             + sizeof(PyDictKeyEntry) * usable);
        if (dk == NULL) {
            PyErr_NoMemory();
            return NULL;
        }
    }
    DK_DEBUG_INCREF dk->dk_refcnt = 1;
    dk->dk_size = size;
    dk->dk_usable = usable;
    dk->dk_lookup = lookdict_unicode_nodummy;
    dk->dk_nentries = 0;
    memset(&dk->dk_indices[0], 0xff, es * size);
    memset(DK_ENTRIES(dk), 0, sizeof(PyDictKeyEntry) * usable);
    return dk;
}
  • 主要内容是通过传入的size,检查是否符合生成PyDictKeysObject的条件,如果满足则申请内存生成一个PyDictKeysObject
  • 之后调用new_dict初始化并返回一个PyDictObject
Objects\dictobject.c

/* Consumes a reference to the keys object */
static PyObject *
new_dict(PyDictKeysObject *keys, PyObject **values)
{
    PyDictObject *mp;
    assert(keys != NULL);
    if (numfree) {
        mp = free_list[--numfree];
        assert (mp != NULL);
        assert (Py_TYPE(mp) == &PyDict_Type);
        _Py_NewReference((PyObject *)mp);
    }
    else {
        mp = PyObject_GC_New(PyDictObject, &PyDict_Type);
        if (mp == NULL) {
            DK_DECREF(keys);
            free_values(values);
            return NULL;
        }
    }
    mp->ma_keys = keys;
    mp->ma_values = values;
    mp->ma_used = 0;
    mp->ma_version_tag = DICT_NEXT_VERSION();
    assert(_PyDict_CheckConsistency(mp));
    return (PyObject *)mp;
}
  • 根据keysvalues判断是从缓冲池获取或者生成新的PyDictObject

三、字典的查找

  • 字典中查找提供了两种策略,分别是lookdictlookdict_unicode
  • 两种策略实际上使用了相同的算法,lookdict_unicode只是针对字符串搜索的特殊形式。
  • lookdict_unicode_nodummylookdict_unicode的无dummy状态函数,可以提高搜索效率。
Objects\dictobject.c

static Py_ssize_t _Py_HOT_FUNCTION
lookdict(PyDictObject *mp, PyObject *key,
         Py_hash_t hash, PyObject **value_addr)
{
    size_t i, mask, perturb;
    PyDictKeysObject *dk;
    PyDictKeyEntry *ep0;

top:
    dk = mp->ma_keys;
    ep0 = DK_ENTRIES(dk);
    mask = DK_MASK(dk);
    perturb = hash;
    i = (size_t)hash & mask;

    for (;;) {
        Py_ssize_t ix = dk_get_index(dk, i);
        if (ix == DKIX_EMPTY) {
            *value_addr = NULL;
            return ix;
        }
        if (ix >= 0) {
            PyDictKeyEntry *ep = &ep0[ix];
            assert(ep->me_key != NULL);
            if (ep->me_key == key) {
                *value_addr = ep->me_value;
                return ix;
            }
            if (ep->me_hash == hash) {
                PyObject *startkey = ep->me_key;
                Py_INCREF(startkey);
                int cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
                Py_DECREF(startkey);
                if (cmp < 0) {
                    *value_addr = NULL;
                    return DKIX_ERROR;
                }
                if (dk == mp->ma_keys && ep->me_key == startkey) {
                    if (cmp > 0) {
                        *value_addr = ep->me_value;
                        return ix;
                    }
                }
                else {
                    /* The dict was mutated, restart */
                    goto top;
                }
            }
        }
        perturb >>= PERTURB_SHIFT;
        i = (i*5 + perturb + 1) & mask;
    }
    Py_UNREACHABLE();
}
  • 首先找到哈希表的起点并计算哈希值。
  dk = mp->ma_keys;
  mask = DK_MASK(dk);
  • 如果找到相同地址,则找到目标值。
if (ep->me_key == key) {
               *value_addr = ep->me_value;
               return ix;
           }
  • 如果哈希值相同,则进行比较。
if (ep->me_hash == hash) {
               PyObject *startkey = ep->me_key;
               Py_INCREF(startkey);
               int cmp = PyObject_RichCompareBool(startkey, key, Py_EQ);
               Py_DECREF(startkey);
               if (cmp < 0) {
                   *value_addr = NULL;
                   return DKIX_ERROR;
               }
               if (dk == mp->ma_keys && ep->me_key == startkey) {
                   if (cmp > 0) {
                       *value_addr = ep->me_value;
                       return ix;
                   }
               }
               else {
                   /* The dict was mutated, restart */
                   goto top;
               }
           }
Objects\dictobject.c

/* Specialized version for string-only keys */
static Py_ssize_t _Py_HOT_FUNCTION
lookdict_unicode(PyDictObject *mp, PyObject *key,
                 Py_hash_t hash, PyObject **value_addr)
{
    assert(mp->ma_values == NULL);
    /* Make sure this function doesn't have to handle non-unicode keys,
       including subclasses of str; e.g., one reason to subclass
       unicodes is to override __eq__, and for speed we don't cater to
       that here. */
    if (!PyUnicode_CheckExact(key)) {
        mp->ma_keys->dk_lookup = lookdict;
        return lookdict(mp, key, hash, value_addr);
    }

    PyDictKeyEntry *ep0 = DK_ENTRIES(mp->ma_keys);
    size_t mask = DK_MASK(mp->ma_keys);
    size_t perturb = (size_t)hash;
    size_t i = (size_t)hash & mask;

    for (;;) {
        Py_ssize_t ix = dk_get_index(mp->ma_keys, i);
        if (ix == DKIX_EMPTY) {
            *value_addr = NULL;
            return DKIX_EMPTY;
        }
        if (ix >= 0) {
            PyDictKeyEntry *ep = &ep0[ix];
            assert(ep->me_key != NULL);
            assert(PyUnicode_CheckExact(ep->me_key));
            if (ep->me_key == key ||
                    (ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
                *value_addr = ep->me_value;
                return ix;
            }
        }
        perturb >>= PERTURB_SHIFT;
        i = mask & (i*5 + perturb + 1);
    }
    Py_UNREACHABLE();
}
  • 如果不是unicode,则直接调用lookdict
   if (!PyUnicode_CheckExact(key)) {
       mp->ma_keys->dk_lookup = lookdict;
       return lookdict(mp, key, hash, value_addr);
   }
  • 获取索引位置对象。
   Py_ssize_t ix = dictkeys_get_index(mp->ma_keys, i);
  • 如果找到相同的key,则获得映射的value。
   if (ep->me_key == key ||
                   (ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
               *value_addr = ep->me_value;
               return ix;
           }
Objects\dictobject.c

/* Faster version of lookdict_unicode when it is known that no <dummy> keys
 * will be present. */
static Py_ssize_t _Py_HOT_FUNCTION
lookdict_unicode_nodummy(PyDictObject *mp, PyObject *key,
                         Py_hash_t hash, PyObject **value_addr)
{
    assert(mp->ma_values == NULL);
    /* Make sure this function doesn't have to handle non-unicode keys,
       including subclasses of str; e.g., one reason to subclass
       unicodes is to override __eq__, and for speed we don't cater to
       that here. */
    if (!PyUnicode_CheckExact(key)) {
        mp->ma_keys->dk_lookup = lookdict;
        return lookdict(mp, key, hash, value_addr);
    }

    PyDictKeyEntry *ep0 = DK_ENTRIES(mp->ma_keys);
    size_t mask = DK_MASK(mp->ma_keys);
    size_t perturb = (size_t)hash;
    size_t i = (size_t)hash & mask;

    for (;;) {
        Py_ssize_t ix = dk_get_index(mp->ma_keys, i);
        assert (ix != DKIX_DUMMY);
        if (ix == DKIX_EMPTY) {
            *value_addr = NULL;
            return DKIX_EMPTY;
        }
        PyDictKeyEntry *ep = &ep0[ix];
        assert(ep->me_key != NULL);
        assert(PyUnicode_CheckExact(ep->me_key));
        if (ep->me_key == key ||
            (ep->me_hash == hash && unicode_eq(ep->me_key, key))) {
            *value_addr = ep->me_value;
            return ix;
        }
        perturb >>= PERTURB_SHIFT;
        i = mask & (i*5 + perturb + 1);
    }
    Py_UNREACHABLE();
}
  • lookdict_unicode类似,区别是增加了dummy状态检查。
assert (ix != DKIX_DUMMY);

四、字典的插入

  • 插入调用了字典对象的tp_as_mapping方法集的mp_ass_subscript方法。
Objects\dictobject.c

static PyMappingMethods dict_as_mapping = {
    (lenfunc)dict_length, /*mp_length*/
    (binaryfunc)dict_subscript, /*mp_subscript*/
    (objobjargproc)dict_ass_sub, /*mp_ass_subscript*/
};
  • dict_ass_sub方法中可以看出,删除key对应PyDict_DelItem方法,而设置key对应 PyDict_SetItem方法。
Objects\dictobject.c

static int
dict_ass_sub(PyDictObject *mp, PyObject *v, PyObject *w)
{
    if (w == NULL)
        return PyDict_DelItem((PyObject *)mp, v);
    else
        return PyDict_SetItem((PyObject *)mp, v, w);
}
Objects\dictobject.c

/* CAUTION: PyDict_SetItem() must guarantee that it won't resize the
 * dictionary if it's merely replacing the value for an existing key.
 * This means that it's safe to loop over a dictionary with PyDict_Next()
 * and occasionally replace a value -- but you can't insert new keys or
 * remove them.
 */
int
PyDict_SetItem(PyObject *op, PyObject *key, PyObject *value)
{
    PyDictObject *mp;
    Py_hash_t hash;
    if (!PyDict_Check(op)) {
        PyErr_BadInternalCall();
        return -1;
    }
    assert(key);
    assert(value);
    mp = (PyDictObject *)op;
    if (!PyUnicode_CheckExact(key) ||
        (hash = ((PyASCIIObject *) key)->hash) == -1)
    {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return -1;
    }

    /* insertdict() handles any resizing that might be necessary */
    return insertdict(mp, key, hash, value);
}
  • PyDict_SetItem首先判断传入的值op是否是字典类型。
if (!PyDict_Check(op)) {
       PyErr_BadInternalCall();
       return -1;
   }
  • 然后判断哈希值是否为-1。
if (!PyUnicode_CheckExact(key) ||
       (hash = ((PyASCIIObject *) key)->hash) == -1)
   {
       hash = PyObject_Hash(key);
       if (hash == -1)
           return -1;
   }
  • PyDict_SetItem的结尾处,调用insertdict完成插入动作。
Objects\dictobject.c

/*
Internal routine to insert a new item into the table.
Used both by the internal resize routine and by the public insert routine.
Returns -1 if an error occurred, or 0 on success.
*/
static int
insertdict(PyDictObject *mp, PyObject *key, Py_hash_t hash, PyObject *value)
{
    PyObject *old_value;
    PyDictKeyEntry *ep;

    Py_INCREF(key);
    Py_INCREF(value);
    if (mp->ma_values != NULL && !PyUnicode_CheckExact(key)) {
        if (insertion_resize(mp) < 0)
            goto Fail;
    }

    Py_ssize_t ix = mp->ma_keys->dk_lookup(mp, key, hash, &old_value);
    if (ix == DKIX_ERROR)
        goto Fail;

    assert(PyUnicode_CheckExact(key) || mp->ma_keys->dk_lookup == lookdict);
    MAINTAIN_TRACKING(mp, key, value);

    /* When insertion order is different from shared key, we can't share
     * the key anymore.  Convert this instance to combine table.
     */
    if (_PyDict_HasSplitTable(mp) &&
        ((ix >= 0 && old_value == NULL && mp->ma_used != ix) ||
         (ix == DKIX_EMPTY && mp->ma_used != mp->ma_keys->dk_nentries))) {
        if (insertion_resize(mp) < 0)
            goto Fail;
        ix = DKIX_EMPTY;
    }

    if (ix == DKIX_EMPTY) {
        /* Insert into new slot. */
        assert(old_value == NULL);
        if (mp->ma_keys->dk_usable <= 0) {
            /* Need to resize. */
            if (insertion_resize(mp) < 0)
                goto Fail;
        }
        Py_ssize_t hashpos = find_empty_slot(mp->ma_keys, hash);
        ep = &DK_ENTRIES(mp->ma_keys)[mp->ma_keys->dk_nentries];
        dk_set_index(mp->ma_keys, hashpos, mp->ma_keys->dk_nentries);
        ep->me_key = key;
        ep->me_hash = hash;
        if (mp->ma_values) {
            assert (mp->ma_values[mp->ma_keys->dk_nentries] == NULL);
            mp->ma_values[mp->ma_keys->dk_nentries] = value;
        }
        else {
            ep->me_value = value;
        }
        mp->ma_used++;
        mp->ma_version_tag = DICT_NEXT_VERSION();
        mp->ma_keys->dk_usable--;
        mp->ma_keys->dk_nentries++;
        assert(mp->ma_keys->dk_usable >= 0);
        assert(_PyDict_CheckConsistency(mp));
        return 0;
    }

    if (_PyDict_HasSplitTable(mp)) {
        mp->ma_values[ix] = value;
        if (old_value == NULL) {
            /* pending state */
            assert(ix == mp->ma_used);
            mp->ma_used++;
        }
    }
    else {
        assert(old_value != NULL);
        DK_ENTRIES(mp->ma_keys)[ix].me_value = value;
    }

    mp->ma_version_tag = DICT_NEXT_VERSION();
    Py_XDECREF(old_value); /* which **CAN** re-enter (see issue #22653) */
    assert(_PyDict_CheckConsistency(mp));
    Py_DECREF(key);
    return 0;

Fail:
    Py_DECREF(value);
    Py_DECREF(key);
    return -1;
}
  • 首先value不为空,则重新设置字典的容量。
if (mp->ma_values != NULL && !PyUnicode_CheckExact(key)) {
       if (insertion_resize(mp) < 0)
           goto Fail;
   }
  • 之后调用查询方法dk_lookup(这里对应lookdict_unicode_nodummy),查询值在字典中是否已存在,返回Entry的index。
Py_ssize_t ix = mp->ma_keys->dk_lookup(mp, key, hash, &old_value);
   if (ix == DKIX_ERROR)
       goto Fail;
  • 查询key和value是否需要加入垃圾回收。
MAINTAIN_TRACKING(mp, key, value);
  • 查看是否是分离表,并且查看缓冲池中是否有旧值。
   /* When insertion order is different from shared key, we can't share
    * the key anymore.  Convert this instance to combine table.
    */
   if (_PyDict_HasSplitTable(mp) &&
       ((ix >= 0 && old_value == NULL && mp->ma_used != ix) ||
        (ix == DKIX_EMPTY && mp->ma_used != mp->ma_keys->dk_nentries))) {
       if (insertion_resize(mp) < 0)
           goto Fail;
       ix = DKIX_EMPTY;
   }
  • 如果是新值,则执行插入动作。
if (ix == DKIX_EMPTY) {
       /* Insert into new slot. */
       assert(old_value == NULL);
       if (mp->ma_keys->dk_usable <= 0) {
           /* Need to resize. */
           if (insertion_resize(mp) < 0)
               goto Fail;
       }
       Py_ssize_t hashpos = find_empty_slot(mp->ma_keys, hash);
       ep = &DK_ENTRIES(mp->ma_keys)[mp->ma_keys->dk_nentries];
       dk_set_index(mp->ma_keys, hashpos, mp->ma_keys->dk_nentries);
       ep->me_key = key;
       ep->me_hash = hash;
       if (mp->ma_values) {
           assert (mp->ma_values[mp->ma_keys->dk_nentries] == NULL);
           mp->ma_values[mp->ma_keys->dk_nentries] = value;
       }
       else {
           ep->me_value = value;
       }
       mp->ma_used++;
       mp->ma_version_tag = DICT_NEXT_VERSION();
       mp->ma_keys->dk_usable--;
       mp->ma_keys->dk_nentries++;
       assert(mp->ma_keys->dk_usable >= 0);
       assert(_PyDict_CheckConsistency(mp));
       return 0;
   }
  • 如果是分离表,直接对应影射的value。
if (_PyDict_HasSplitTable(mp)) {
       mp->ma_values[ix] = value;
       if (old_value == NULL) {
           /* pending state */
           assert(ix == mp->ma_used);
           mp->ma_used++;
       }
   }
  • 否则使用旧的value。
else {
       assert(old_value != NULL);
       DK_ENTRIES(mp->ma_keys)[ix].me_value = value;
   }

五、字典的删除

  • 在插入中已经提到,删除调用PyDict_DelItem方法。
Objects\dictobject.c

int
PyDict_DelItem(PyObject *op, PyObject *key)
{
    Py_hash_t hash;
    assert(key);
    if (!PyUnicode_CheckExact(key) ||
        (hash = ((PyASCIIObject *) key)->hash) == -1) {
        hash = PyObject_Hash(key);
        if (hash == -1)
            return -1;
    }

    return _PyDict_DelItem_KnownHash(op, key, hash);
}
  • 检查key的合法性,并获得哈希值后,继续调用了内部函数_PyDict_DelItem_KnownHash
Objects\dictobject.c

int
_PyDict_DelItem_KnownHash(PyObject *op, PyObject *key, Py_hash_t hash)
{
    Py_ssize_t ix;
    PyDictObject *mp;
    PyObject *old_value;

    if (!PyDict_Check(op)) {
        PyErr_BadInternalCall();
        return -1;
    }
    assert(key);
    assert(hash != -1);
    mp = (PyDictObject *)op;
    ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value);
    if (ix == DKIX_ERROR)
        return -1;
    if (ix == DKIX_EMPTY || old_value == NULL) {
        _PyErr_SetKeyError(key);
        return -1;
    }

    // Split table doesn't allow deletion.  Combine it.
    if (_PyDict_HasSplitTable(mp)) {
        if (dictresize(mp, DK_SIZE(mp->ma_keys))) {
            return -1;
        }
        ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value);
        assert(ix >= 0);
    }

    return delitem_common(mp, hash, ix, old_value);
}
  • 与插入类似,查询传入的op是否是字典类型,并搜索词条。
   if (!PyDict_Check(op)) {
       PyErr_BadInternalCall();
       return -1;
   }
   assert(key);
   assert(hash != -1);
   mp = (PyDictObject *)op;
   ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value);
   if (ix == DKIX_ERROR)
       return -1;
   if (ix == DKIX_EMPTY || old_value == NULL) {
       _PyErr_SetKeyError(key);
       return -1;
   }
  • 由于分离字典不能删除值,如果是分离字典,则转换为联合字典。
if (_PyDict_HasSplitTable(mp)) {
       if (dictresize(mp, DK_SIZE(mp->ma_keys))) {
           return -1;
       }
       ix = (mp->ma_keys->dk_lookup)(mp, key, hash, &old_value);
       assert(ix >= 0);
   }
  • 之后调用delitem_common方法,执行具体的删除操作。
Objects\dictobject.c

static int
delitem_common(PyDictObject *mp, Py_hash_t hash, Py_ssize_t ix,
               PyObject *old_value)
{
    PyObject *old_key;
    PyDictKeyEntry *ep;

    Py_ssize_t hashpos = lookdict_index(mp->ma_keys, hash, ix);
    assert(hashpos >= 0);

    mp->ma_used--;
    mp->ma_version_tag = DICT_NEXT_VERSION();
    ep = &DK_ENTRIES(mp->ma_keys)[ix];
    dk_set_index(mp->ma_keys, hashpos, DKIX_DUMMY);
    ENSURE_ALLOWS_DELETIONS(mp);
    old_key = ep->me_key;
    ep->me_key = NULL;
    ep->me_value = NULL;
    Py_DECREF(old_key);
    Py_DECREF(old_value);

    assert(_PyDict_CheckConsistency(mp));
    return 0;
}

六、字典的缓冲池

  • PyListObject类似,PyDictObject同样使用了缓冲池。
Objects\dictobject.c

#ifndef PyDict_MAXFREELIST
#define PyDict_MAXFREELIST 80
#endif
static PyDictObject *free_list[PyDict_MAXFREELIST];
static int numfree = 0;
static PyDictKeysObject *keys_free_list[PyDict_MAXFREELIST];
static int numfreekeys = 0;
  • 缓冲池的机制也与List类似,在PyDictObject销毁时,将空的PyDictObject装入。
Objects\dictobject.c

static void
dict_dealloc(PyDictObject *mp)
{
    PyObject **values = mp->ma_values;
    PyDictKeysObject *keys = mp->ma_keys;
    Py_ssize_t i, n;

    /* bpo-31095: UnTrack is needed before calling any callbacks */
    PyObject_GC_UnTrack(mp);
    Py_TRASHCAN_SAFE_BEGIN(mp)
    if (values != NULL) {
        if (values != empty_values) {
            for (i = 0, n = mp->ma_keys->dk_nentries; i < n; i++) {
                Py_XDECREF(values[i]);
            }
            free_values(values);
        }
        DK_DECREF(keys);
    }
    else if (keys != NULL) {
        assert(keys->dk_refcnt == 1);
        DK_DECREF(keys);
    }
    if (numfree < PyDict_MAXFREELIST && Py_TYPE(mp) == &PyDict_Type)
        free_list[numfree++] = mp;
    else
        Py_TYPE(mp)->tp_free((PyObject *)mp);
    Py_TRASHCAN_SAFE_END(mp)
}
  • 在创建新的PyDictObject时,优先从缓冲池中取出。
Objects\dictobject.c

static PyObject *
new_dict(PyDictKeysObject *keys, PyObject **values)
{
    PyDictObject *mp;
    assert(keys != NULL);
    if (numfree) {
        mp = free_list[--numfree];
        assert (mp != NULL);
        assert (Py_TYPE(mp) == &PyDict_Type);
        _Py_NewReference((PyObject *)mp);
    }
    else {
        mp = PyObject_GC_New(PyDictObject, &PyDict_Type);
        if (mp == NULL) {
            DK_DECREF(keys);
            free_values(values);
            return NULL;
        }
    }
    mp->ma_keys = keys;
    mp->ma_values = values;
    mp->ma_used = 0;
    mp->ma_version_tag = DICT_NEXT_VERSION();
    assert(_PyDict_CheckConsistency(mp));
    return (PyObject *)mp;
}

相关文章

网友评论

      本文标题:大师兄的Python源码学习笔记(六): Dict对象

      本文链接:https://www.haomeiwen.com/subject/fhmjfltx.html