美文网首页收入即学习
FPKM差异表达分析

FPKM差异表达分析

作者: 谢京合 | 来源:发表于2020-10-12 16:37 被阅读0次

    读取表达矩阵

    setwd("E:/8.差异表达基因/")
    a <- read.table("RNAmatrix.txt",header = T)
    

    去重复

    b <- a[a$gene_name,]

    去掉第一行第一列

    rownames(c) <- c[,1]

    c <- c[,-1]

    选择所需数据

    a <- c[,-()]

    c <- c[,10:15]

    dat1<-as.data.frame(c)
    dim(dat1)
    dat1[1:4,1:4]
    

    很多表达量为0的样本,直接选择在某个基因如果在3个样品中的表达量为零,则直接舍去。

    apply(dat1,1,function(x){sum(floor(x)==0)>3})
    dat1<-dat1[!apply(dat1,1,function(x){sum(floor(x)==0)>3}),]
    dim(dat1)
    head(dat1)
    write.csv(dat1,"dat1.csv")
    

    boxplot(dat1)

    差异很大取log归一化

    dat3 <- log(dat1)#下游分析的结果有缺失值,故选择log(dat2 + 1)

    dat4 <- log(dat1 + 1)
    

    boxplot(dat3)

    boxplot(dat4)

    write.csv(dat3,"dat3.csv")

    write.csv(dat4,"dat4.csv")
    

    差异基因分析

    library(limma)
    
    group <- c(rep("normal",50),rep("cancer",374)) 
    head(group)
    View(group)
    
    group <- factor(group)
    design <- model.matrix(~0 + group)
    colnames(design) <- levels(group)
    design
    
    
    contrast.matrix <- makeContrasts(normal - cancer,  
                                     levels=design)
    
    contrast.matrix
    
    fit <- lmFit(dat4,design)
    fit2 <- contrasts.fit(fit, contrast.matrix) 
    fit2 <- eBayes(fit2)
    
    allDiff1=topTable(fit2,adjust='fdr',coef=1,number=Inf) 
    save(dat4,group,allDiff1,file = "RNAmatrix_result.txt")
    
    write.csv(allDiff1, file = "normal_vs_cancer.csv" )
    

    相关文章

      网友评论

        本文标题:FPKM差异表达分析

        本文链接:https://www.haomeiwen.com/subject/fhrjpktx.html