1.什么是栈
先进后出,元素的删除和插入只能在同一端的一种线性表
2.栈的实现方式
数组和链表都可以,本次使用数组
3.什么是中缀表达式
3+2-1*6+10
4.代码:
/**
* @author shengjk1
* @date 2020/2/13
*/
public class Calcaulator {
public static void main(String[] args) {
// 中缀表达式
String expression = "5-1*6+2";
//创建两个栈 数栈、符号栈
ArrayStack1 numStack = new ArrayStack1(10);
ArrayStack1 operStack = new ArrayStack1(10);
//用于遍历
int index = 0;
int num1, num2 = 0;
int oper = 0;
int res = 0;
//每次扫描得到的char
char ch = ' ';
//用来拼接多位数
String keepNum = "";
while (true) {
ch = expression.substring(index, index + 1).charAt(0);
//判断 ch 是什么,然后做相应的处理
if (operStack.isOper(ch)) {
//判断当前的符号栈是否为空
if (!operStack.isEmpty()) {
//如果当前的操作符的优先级小于等于栈中符号的优先级,就需要从数栈中 pop 两个数
//在从符号栈中 pop 出一个符号,进行运算,将得到结果,入数栈,然后将当前的操作符入符号栈
if (operStack.priority(ch) <= operStack.priority(operStack.peek())) {
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
res = numStack.cal(num1, num2, oper);
//运算的结果入数栈
numStack.push(res);
//然后将当前的操作符入符号栈
operStack.push(ch);
} else {
//如果当前的操作符大于栈中的操作符,就直接入符号栈
operStack.push(ch);
}
} else {
//如果为空,直接入符号栈
operStack.push(ch);
}
} else {
// 如果是数字则直接入数栈
// numStack.push(ch - 48);
//看 index 后一位,如果是数则继续进行扫描,如果不是则入栈
keepNum += ch;
if (index == expression.length() - 1) {
numStack.push(Integer.parseInt(keepNum));
} else {
if (operStack.isOper(expression.substring(index + 1, index + 2).charAt(0))) {
numStack.push(Integer.parseInt(keepNum));
keepNum = "";
}
}
}
//让 index +1,并判断是否扫描到 exoression 最后
index++;
if (index >= expression.length()) {
break;
}
}
//当表达式扫描完毕,就顺序的从数栈和符号栈中pop出相应的数和符号,并运行
while (true) {
if (operStack.isEmpty()) {
break;
}
num1 = numStack.pop();
num2 = numStack.pop();
oper = operStack.pop();
res = numStack.cal(num1, num2, oper);
//运算的结果入数栈
numStack.push(res);
}
System.out.printf("表达式 %s = %d ", expression, numStack.pop());
}
}
class ArrayStack1 {
private int maxSize;
private int[] stack;
private int top = -1;
public ArrayStack1(int maxSize) {
this.maxSize = maxSize;
stack = new int[maxSize];
}
// 栈满
public boolean isFull() {
return top == maxSize - 1;
}
//栈空
public boolean isEmpty() {
return top == -1;
}
//查看当前栈顶的值
public int peek() {
return stack[top];
}
//入栈
public void push(int element) {
if (isFull()) {
System.out.println("栈满");
return;
}
top++;
stack[top] = element;
}
//出栈
public int pop() {
if (isEmpty()) {
throw new RuntimeException("stack is empty!");
}
int temp = stack[top];
// stack[top]=null; 防止内存泄露
top--;
return temp;
}
//
public void list() {
if (isEmpty()) {
System.out.println("stack is empty");
return;
}
for (int i = top; i >= 0; i--) {
System.out.printf("stack[%d]=%d\n", i, stack[i]);
}
}
//返回运算符的优先级 假设优先级越高返回的数字越大
public int priority(int oper) {
if (oper == '*' || oper == '/') {
return 1;
} else if (oper == '+' || oper == '-') {
return 0;
} else {
//假设目前表达式只有 + - * /
return -1;
}
}
/**
* @param val
* @return
*/
public boolean isOper(char val) {
return val == '+' || val == '-' || val == '*' || val == '/';
}
/**
* 计算
*
* @param num1
* @param num2
* @param oper
* @return
*/
public int cal(int num1, int num2, int oper) {
int res = 0;
switch (oper) {
case '+':
res = num1 + num2;
break;
case '-':
//注意顺序
res = num2 - num1;
break;
case '*':
res = num1 * num2;
break;
case '/':
res = num2 / num1;
break;
default:
break;
}
return res;
}
}
5.栈的使用场景:
1.递归
2.方法调用
3.表达式的转化和求值
4.二叉树遍历
5.图的深度优先遍历
6.逆序输出 如 单链表的反转
6.面试题
如何用两个栈达到一个队列的效果
网友评论