美文网首页python_爬虫
Python爬取二手房源数据,可视化分析二手房市场行情数据

Python爬取二手房源数据,可视化分析二手房市场行情数据

作者: Python案例教学 | 来源:发表于2021-09-29 14:23 被阅读0次

    本文重点

    1. 系统分析网页性质
    2. 结构化的数据解析
    3. csv数据保存

    环境介绍

    • python 3.8
    • pycharm 专业版 >>> 激活码

    模块使用

    • requests >>> pip install requests
    • parsel >>> pip install parsel
    • csv

    爬虫代码实现步骤: 发送请求 >>> 获取数据 >>> 解析数据 >>> 保存数据

    导入模块

    import requests # 数据请求模块 第三方模块 pip install requests
    import parsel # 数据解析模块
    import re
    import csv
    

    发送请求, 对于房源列表页发送请求

    url = 'https://bj.lianjia.com/ershoufang/pg1/'
    # 需要携带上 请求头: 把python代码伪装成浏览器 对于服务器发送请求
    # User-Agent 浏览器的基本信息
    headers = {
        'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.61 Safari/537.36'
    }
    response = requests.get(url=url, headers=headers)
    

    获取数据

    print(response.text)
    

    解析数据

    selector_1 = parsel.Selector(response.text)
    # 把获取到response.text 数据内容转成 selector 对象
    href = selector_1.css('div.leftContent li div.title a::attr(href)').getall()
    for link in href:
        html_data = requests.get(url=link, headers=headers).text
        selector = parsel.Selector(html_data)
        # css选择器 语法
        # try:
        title = selector.css('.title h1::text').get() # 标题
        area = selector.css('.areaName .info a:nth-child(1)::text').get()  # 区域
        community_name = selector.css('.communityName .info::text').get()  # 小区
        room = selector.css('.room .mainInfo::text').get()  # 户型
        room_type = selector.css('.type .mainInfo::text').get()  # 朝向
        height = selector.css('.room .subInfo::text').get().split('/')[-1]  # 楼层
        # 中楼层/共5层 split('/') 进行字符串分割  ['中楼层', '共5层'] [-1]
        # ['中楼层', '共5层'][-1] 列表索引位置取值 取列表中最后一个元素  共5层
        # re.findall('共(\d+)层', 共5层) >>>  [5][0] >>> 5
        height = re.findall('共(\d+)层', height)[0]
        sub_info = selector.css('.type .subInfo::text').get().split('/')[-1]  # 装修
        Elevator = selector.css('.content li:nth-child(12)::text').get()  # 电梯
        # if Elevator == '暂无数据电梯' or Elevator == None:
        #     Elevator = '无电梯'
        house_area = selector.css('.content li:nth-child(3)::text').get().replace('㎡', '')  # 面积
        price = selector.css('.price .total::text').get()  # 价格(万元)
        date = selector.css('.area .subInfo::text').get().replace('年建', '')  # 年份
        dit = {
            '标题': title,
            '市区': area,
            '小区': community_name,
            '户型': room,
            '朝向': room_type,
            '楼层': height,
            '装修情况': sub_info,
            '电梯': Elevator,
            '面积(㎡)': house_area,
            '价格(万元)': price,
            '年份': date,
        }
        csv_writer.writerow(dit)
        print(title, area, community_name, room, room_type, height, sub_info, Elevator, house_area, price, date,
              sep='|')
    

    保存数据

    f = open('二手房数据.csv', mode='a', encoding='utf-8', newline='')
    csv_writer = csv.DictWriter(f, fieldnames=[
        '标题',
        '市区',
        '小区',
        '户型',
        '朝向',
        '楼层',
        '装修情况',
        '电梯',
        '面积(㎡)',
        '价格(万元)',
        '年份',
    ])
    csv_writer.writeheader()
    

    数据可视化

    导入所需模块

    import pandas as pd
    from pyecharts.charts import Map
    from pyecharts.charts import Bar
    from pyecharts.charts import Line
    from pyecharts.charts import Grid
    from pyecharts.charts import Pie
    from pyecharts.charts import Scatter
    from pyecharts import options as opts
    

    读取数据

    df = pd.read_csv('链家.csv', encoding = 'utf-8')
    df.head()
    

    各城区二手房数量北京市地图

    new = [x + '区' for x in region]
    m = (
            Map()
            .add('', [list(z) for z in zip(new, count)], '北京')
            .set_global_opts(
                title_opts=opts.TitleOpts(title='北京市二手房各区分布'),
                visualmap_opts=opts.VisualMapOpts(max_=3000),
            )
        )
    m.render_notebook()
    

    各城区二手房数量-平均价格柱状图

    df_price.values.tolist()
    price = [round(x,2) for x in df_price.values.tolist()]
    bar = (
        Bar()
        .add_xaxis(region)
        .add_yaxis('数量', count,
                  label_opts=opts.LabelOpts(is_show=True))
        .extend_axis(
            yaxis=opts.AxisOpts(
                name="价格(万元)",
                type_="value",
                min_=200,
                max_=900,
                interval=100,
                axislabel_opts=opts.LabelOpts(formatter="{value}"),
            )
        )
        .set_global_opts(
            title_opts=opts.TitleOpts(title='各城区二手房数量-平均价格柱状图'),
            tooltip_opts=opts.TooltipOpts(
                is_show=True, trigger="axis", axis_pointer_type="cross"
            ),
            xaxis_opts=opts.AxisOpts(
                type_="category",
                axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"),
            ),
            yaxis_opts=opts.AxisOpts(name='数量',
                axistick_opts=opts.AxisTickOpts(is_show=True),
                splitline_opts=opts.SplitLineOpts(is_show=False),)
        )
    )
    
    line2 = (
        Line()
        .add_xaxis(xaxis_data=region)
        .add_yaxis(
            
            series_name="价格",
            yaxis_index=1,
            y_axis=price,
            label_opts=opts.LabelOpts(is_show=True),
            z=10
            )
    )
    
    bar.overlap(line2)
    grid = Grid()
    grid.add(bar, opts.GridOpts(pos_left="5%", pos_right="20%"), is_control_axis_index=True)
    grid.render_notebook()
    
    area0 = top_price['小区'].values.tolist()
    count = top_price['价格(万元)'].values.tolist()
    
    bar = (
        Bar()
        .add_xaxis(area0)
        .add_yaxis('数量', count,category_gap = '50%')
        .set_global_opts(
            yaxis_opts=opts.AxisOpts(name='价格(万元)'),
            xaxis_opts=opts.AxisOpts(name='数量'),
        )
    )
    bar.render_notebook()
    

    散点图

    s = (
        Scatter()
        .add_xaxis(df['面积(㎡)'].values.tolist())
        .add_yaxis('',df['价格(万元)'].values.tolist())
        .set_global_opts(xaxis_opts=opts.AxisOpts(type_='value'))
    )
    s.render_notebook()
    

    房屋朝向占比

    directions = df_direction.index.tolist()
    count = df_direction.values.tolist()
    
    c1 = (
        Pie(init_opts=opts.InitOpts(
                width='800px', height='600px',
                )
           )
            .add(
            '',
            [list(z) for z in zip(directions, count)],
            radius=['20%', '60%'],
            center=['40%', '50%'],
    #         rosetype="radius",
            label_opts=opts.LabelOpts(is_show=True),
            )    
            .set_global_opts(title_opts=opts.TitleOpts(title='房屋朝向占比',pos_left='33%',pos_top="5%"),
                            legend_opts=opts.LegendOpts(type_="scroll", pos_left="80%",pos_top="25%",orient="vertical")
                            )
            .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c} ({d}%)'),position="outside")
        )
    c1.render_notebook()
    

    装修情况/有无电梯玫瑰图(组合图)

    fitment = df_fitment.index.tolist()
    count1 = df_fitment.values.tolist()
    
    directions = df_direction.index.tolist()
    count2 = df_direction.values.tolist()
    
    bar = (
        Bar()
        .add_xaxis(fitment)
        .add_yaxis('', count1, category_gap = '50%')
        .reversal_axis()
        .set_series_opts(label_opts=opts.LabelOpts(position='right'))    
        .set_global_opts(
            xaxis_opts=opts.AxisOpts(name='数量'),
            title_opts=opts.TitleOpts(title='装修情况/有无电梯玫瑰图(组合图)',pos_left='33%',pos_top="5%"),
            legend_opts=opts.LegendOpts(type_="scroll", pos_left="90%",pos_top="58%",orient="vertical")
        )
    )
    
    c2 = (
        Pie(init_opts=opts.InitOpts(
                width='800px', height='600px',
                )
           )
            .add(
            '',
            [list(z) for z in zip(directions, count2)],
            radius=['10%', '30%'],
            center=['75%', '65%'],
            rosetype="radius",
            label_opts=opts.LabelOpts(is_show=True),
            )    
            .set_global_opts(title_opts=opts.TitleOpts(title='有/无电梯',pos_left='33%',pos_top="5%"),
                            legend_opts=opts.LegendOpts(type_="scroll", pos_left="90%",pos_top="15%",orient="vertical")
                            )
            .set_series_opts(label_opts=opts.LabelOpts(formatter='{b}:{c} \n ({d}%)'),position="outside")
        )
    
    bar.overlap(c2)
    bar.render_notebook()
    

    二手房楼层分布柱状缩放图

    floor = df_floor.index.tolist()
    count = df_floor.values.tolist()
    bar = (
        Bar()
        .add_xaxis(floor)
        .add_yaxis('数量', count)
        .set_global_opts(
            title_opts=opts.TitleOpts(title='二手房楼层分布柱状缩放图'),
            yaxis_opts=opts.AxisOpts(name='数量'),
            xaxis_opts=opts.AxisOpts(name='楼层'),
            datazoom_opts=opts.DataZoomOpts(type_='slider')
        )
    )
    bar.render_notebook()
    

    房屋面积分布纵向柱状图

    area = df_area.index.tolist()
    count = df_area.values.tolist()
    
    bar = (
        Bar()
        .add_xaxis(area)
        .add_yaxis('数量', count)
        .reversal_axis()
        .set_series_opts(label_opts=opts.LabelOpts(position="right"))
        .set_global_opts(
            title_opts=opts.TitleOpts(title='房屋面积分布纵向柱状图'),
            yaxis_opts=opts.AxisOpts(name='面积(㎡)'),
            xaxis_opts=opts.AxisOpts(name='数量'),
        )
    )
    bar.render_notebook()
    

    相关文章

      网友评论

        本文标题:Python爬取二手房源数据,可视化分析二手房市场行情数据

        本文链接:https://www.haomeiwen.com/subject/frurnltx.html