美文网首页
07. Flink8种分区策略及源码解读

07. Flink8种分区策略及源码解读

作者: bigdata张凯翔 | 来源:发表于2021-04-02 00:28 被阅读0次

Flink8种分区策略有哪几种?

Flink实现的分区策略继承图:.png
GlobalPartitioner: DataStream => DataStream
GlobalPartitioner数据会被分发到下游算子的第一个实例中进行处理。
GlobalPartitioner,GLOBAL分区。`将记录输出到下游Operator的第一个实例。

源码解读:

/**
 * 发送所有的数据到下游算子的第一个task(ID = 0)
 * @param <T>
 */
@Internal
public class GlobalPartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    @Override
    public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
        //只返回0,即只发送给下游算子的第一个task
        return 0;
    }

    @Override
    public StreamPartitioner<T> copy() {
        return this;
    }

    @Override
    public String toString() {
        return "GLOBAL";
    }
}
image.png

ShufflePartitioner: DataStream => DataStream

ShufflePartitioner数据会被随机分发到下游算子的每一个实例中进行处理。
`ShufflePartitioner,SHUFFLE分区。`将记录随机输出到下游Operator的每个实例。
/**
 * 随机的选择一个channel进行发送
 * @param <T>
 */
@Internal
public class ShufflePartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    private Random random = new Random();

    @Override
    public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
        //产生[0,numberOfChannels)伪随机数,随机发送到下游的某个task
        return random.nextInt(numberOfChannels);
    }

    @Override
    public StreamPartitioner<T> copy() {
        return new ShufflePartitioner<T>();
    }

    @Override
    public String toString() {
        return "SHUFFLE";
    }
}
image.png

RebalancePartitioner: DataStream => DataStream

`RebalancePartitioner,REBALANCE分区。`将记录以循环的方式输出到下游Operator的每个实例。
RebalancePartitioner数据会被循环发送到下游的每一个实例中进行处理。
/**
 *通过循环的方式依次发送到下游的task
 * @param <T>
 */
@Internal
public class RebalancePartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    private int nextChannelToSendTo;

    @Override
    public void setup(int numberOfChannels) {
        super.setup(numberOfChannels);
        //初始化channel的id,返回[0,numberOfChannels)的伪随机数
        nextChannelToSendTo = ThreadLocalRandom.current().nextInt(numberOfChannels);
    }

    @Override
    public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
        //循环依次发送到下游的task,比如:nextChannelToSendTo初始值为0,numberOfChannels(下游算子的实例个数,并行度)值为2
        //则第一次发送到ID = 1的task,第二次发送到ID = 0的task,第三次发送到ID = 1的task上...依次类推
        nextChannelToSendTo = (nextChannelToSendTo + 1) % numberOfChannels;
        return nextChannelToSendTo;
    }

    public StreamPartitioner<T> copy() {
        return this;
    }

    @Override
    public String toString() {
        return "REBALANCE";
    }
}
image.png
RescalePartitioner: DataStream => DataStream

RescalePartitioner,RESCALE分区。基于上下游Operator的并行度,将记录以循环的方式输出到下游Operator的每个实例。举例: 上游并行度是2,下游是4,则上游一个并行度以循环的方式将记录输出到下游的两个并行度上;上游另一个并行度以循环的方式将记录输出到下游另两个并行度上。若上游并行度是4,下游并行度是2,则上游两个并行度将记录输出到下游一个并行度上;上游另两个并行度将记录输出到下游另一个并行度上。


image.png

这种分区器会根据上下游算子的并行度,循环的方式输出到下游算子的每个实例。这里有点难以理解,假设上游并行度为2,编号为A和B。下游并行度为4,编号为1,2,3,4。那么A则把数据循环发送给1和2,B则把数据循环发送给3和4。假设上游并行度为4,编号为A,B,C,D。下游并行度为2,编号为1,2。那么A和B则把数据发送给1,C和D则把数据发送给2。

@Internal
public class RescalePartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    private int nextChannelToSendTo = -1;

    @Override
    public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
        if (++nextChannelToSendTo >= numberOfChannels) {
            nextChannelToSendTo = 0;
        }
        return nextChannelToSendTo;
    }

    public StreamPartitioner<T> copy() {
        return this;
    }

    @Override
    public String toString() {
        return "RESCALE";
    }
}

BroadcastPartitioner: DataStream => DataStream

BroadcastPartitioner,BROADCAST分区。广播分区将上游数据集输出到下游Operator的每个实例中。适合于大数据集Join小数据集的场景。
BroadcastPartitioner广播分区会将上游数据输出到下游算子的每个实例中。适合于大数据集和小数据集做Jion的场景。

ForwardPartitioner

ForwardPartitioner,FORWARD分区。将记录输出到下游本地的operator实例。ForwardPartitioner分区器要求上下游算子并行度一样。上下游Operator同属一个SubTasks`。
ForwardPartitionerForwardPartitioner 用于将记录输出到下游本地的算子实例。它要求上下游算子并行度一样。简单的说,ForwardPartitioner用来做数据的控制台打印。

/**
 * 发送到下游对应的第一个task
 * @param <T>
 */
@Internal
public class ForwardPartitioner<T> extends StreamPartitioner<T> {
    private static final long serialVersionUID = 1L;

    @Override
    public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
        return 0;
    }

    public StreamPartitioner<T> copy() {
        return this;
    }

    @Override
    public String toString() {
        return "FORWARD";
    }
}

image.png

在上下游的算子没有指定分区器的情况下,如果上下游的算子并行度一致,则使用ForwardPartitioner,否则使用RebalancePartitioner,对于ForwardPartitioner,必须保证上下游算子并行度一致,否则会抛出异常

//在上下游的算子没有指定分区器的情况下,如果上下游的算子并行度一致,则使用ForwardPartitioner,否则使用RebalancePartitioner
            if (partitioner == null && upstreamNode.getParallelism() == downstreamNode.getParallelism()) {
                partitioner = new ForwardPartitioner<Object>();
            } else if (partitioner == null) {
                partitioner = new RebalancePartitioner<Object>();
            }

            if (partitioner instanceof ForwardPartitioner) {
                //如果上下游的并行度不一致,会抛出异常
                if (upstreamNode.getParallelism() != downstreamNode.getParallelism()) {
                    throw new UnsupportedOperationException("Forward partitioning does not allow " +
                        "change of parallelism. Upstream operation: " + upstreamNode + " parallelism: " + upstreamNode.getParallelism() +
                        ", downstream operation: " + downstreamNode + " parallelism: " + downstreamNode.getParallelism() +
                        " You must use another partitioning strategy, such as broadcast, rebalance, shuffle or global.");
                }
            }

KeyGroupStreamPartitioner(HASH方式):

KeyGroupStreamPartitioner,HASH分区。将记录按Key的Hash值输出到下游Operator实例。
KeyGroupStreamPartitionerHash分区器。会将数据按 Key 的 Hash 值输出到下游算子实例中。

/**
 * 根据key的分组索引选择发送到相对应的下游subtask
 * @param <T>
 * @param <K>
 */
@Internal
public class KeyGroupStreamPartitioner<T, K> extends StreamPartitioner<T> implements ConfigurableStreamPartitioner {
...

    @Override
    public int selectChannel(SerializationDelegate<StreamRecord<T>> record) {
        K key;
        try {
            key = keySelector.getKey(record.getInstance().getValue());
        } catch (Exception e) {
            throw new RuntimeException("Could not extract key from " + record.getInstance().getValue(), e);
        }
        //调用KeyGroupRangeAssignment类的assignKeyToParallelOperator方法,代码如下所示
        return KeyGroupRangeAssignment.assignKeyToParallelOperator(key, maxParallelism, numberOfChannels);
    }
...
}
public final class KeyGroupRangeAssignment {
...

    /**
     * 根据key分配一个并行算子实例的索引,该索引即为该key要发送的下游算子实例的路由信息,
     * 即该key发送到哪一个task
     */
    public static int assignKeyToParallelOperator(Object key, int maxParallelism, int parallelism) {
        Preconditions.checkNotNull(key, "Assigned key must not be null!");
        return computeOperatorIndexForKeyGroup(maxParallelism, parallelism, assignToKeyGroup(key, maxParallelism));
    }

    /**
     *根据key分配一个分组id(keyGroupId)
     */
    public static int assignToKeyGroup(Object key, int maxParallelism) {
        Preconditions.checkNotNull(key, "Assigned key must not be null!");
        //获取key的hashcode
        return computeKeyGroupForKeyHash(key.hashCode(), maxParallelism);
    }

    /**
     * 根据key分配一个分组id(keyGroupId),
     */
    public static int computeKeyGroupForKeyHash(int keyHash, int maxParallelism) {

        //与maxParallelism取余,获取keyGroupId
        return MathUtils.murmurHash(keyHash) % maxParallelism;
    }

    //计算分区index,即该key group应该发送到下游的哪一个算子实例
    public static int computeOperatorIndexForKeyGroup(int maxParallelism, int parallelism, int keyGroupId) {
        return keyGroupId * parallelism / maxParallelism;
    }
...
image.png
CustomPartitionerWrapper

CustomPartitionerWrapper,CUSTOM分区。`通过Partitioner实例的partition方法(自定义的)将记录输出到下游。
CustomPartitionerWrapper用户自定义分区器。需要用户自己实现Partitioner接口,来定义自己的分区逻辑。
通过Partitioner实例的partition方法(自定义的)将记录输出到下游。
例如:

static class CustomPartitioner implements Partitioner<String> {
      @Override
      public int partition(String key, int numPartitions) {
          switch (key){
              case "1":
                  return 1;
              case "2":
                  return 2;
              case "3":
                  return 3;
              default:
                  return 4;
          }
      }
  }

相关文章

网友评论

      本文标题:07. Flink8种分区策略及源码解读

      本文链接:https://www.haomeiwen.com/subject/fytlzhtx.html