Numpy练习

作者: 心智万花筒 | 来源:发表于2016-06-26 20:49 被阅读939次

    1. Import the numpy package under the name np

    import numpy as np
    

    2. Print the numpy version and the configuration

    print np.__version__
    # np.show_config()
    
    1.10.4
    

    3. Create a null vector of size 10

    E = np.empty(3) # not zero acturally
    Z = np.zeros(10)
    print(Z)
    
    [ 0.  0.  0.  0.  0.  0.  0.  0.  0.  0.]
    

    4. How to get the documentation of the numpy add function from the command line ?

    !python -c"import numpy; numpy.info(numpy.add)"
    
    add(x1, x2[, out])
    
    Add arguments element-wise.
    
    Parameters
    ----------
    x1, x2 : array_like
        The arrays to be added.  If ``x1.shape != x2.shape``, they must be
        broadcastable to a common shape (which may be the shape of one or
        the other).
    
    Returns
    -------
    add : ndarray or scalar
        The sum of `x1` and `x2`, element-wise.  Returns a scalar if
        both  `x1` and `x2` are scalars.
    
    Notes
    -----
    Equivalent to `x1` + `x2` in terms of array broadcasting.
    
    Examples
    --------
    >>> np.add(1.0, 4.0)
    5.0
    >>> x1 = np.arange(9.0).reshape((3, 3))
    >>> x2 = np.arange(3.0)
    >>> np.add(x1, x2)
    array([[  0.,   2.,   4.],
           [  3.,   5.,   7.],
           [  6.,   8.,  10.]])
    

    5. Create a null vector of size 10 but the fifth value which is 1

    Z = np.zeros(10)
    Z[4] = 1 # index just like list
    print(Z)
    
    [ 0.  0.  0.  0.  1.  0.  0.  0.  0.  0.]
    

    6. Create a vector with values ranging from 10 to 49

    V = np.arange(10,50) # np.arange not np.range
    print(V)
    
    [10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
     35 36 37 38 39 40 41 42 43 44 45 46 47 48 49]
    

    7. Reverse a vector (first element becomes last)

    V = np.arange(5)
    V = V[::-1]
    print(V)
    
    [4 3 2 1 0]
    

    8. Create a 3x3 matrix with values ranging from 0 to 8

    A = np.arange(9).reshape(3,3)
    print(A)
    
    [[0 1 2]
     [3 4 5]
     [6 7 8]]
    

    9. Find indices of non-zero elements from [1,2,0,0,4,0]

    arr = np.array([1,2,0,0,4,0])
    # list comprehension is not consise VS nonzero
    nz1 = [i for i in range(len(arr)) if arr[i]==0] # a list
    nz = np.nonzero(arr) # return a tuple
    print nz
    print nz1
    
    (array([0, 1, 4]),)
    [2, 3, 5]
    

    10. Create a 3x3 identity matrix

    A = np.eye(3) # for indentity matrix
    B = np.identity(3) # or identity
    print A
    print B == A
    
    [[ 1.  0.  0.]
     [ 0.  1.  0.]
     [ 0.  0.  1.]]
    [[ True  True  True]
     [ True  True  True]
     [ True  True  True]]
    

    11. Create a 3x3x3 array with random values

    Z = np.random.random((3,3,3))
    print Z
    
    [[[ 0.37802182  0.51185549  0.09273136]
      [ 0.35946865  0.44674969  0.76084106]
      [ 0.95776962  0.35601145  0.8915905 ]]
    
     [[ 0.39016786  0.63052983  0.20385571]
      [ 0.04379682  0.32062423  0.97007016]
      [ 0.4026562   0.76746884  0.84974329]]
    
     [[ 0.85230695  0.6368344   0.42200517]
      [ 0.98098412  0.24666028  0.86381806]
      [ 0.71310323  0.89115971  0.85823333]]]
    

    12. Create a 10x10 array with random values and find the minimum and maximum values

    Z = np.random.random((10,10))
    z_max, z_min = Z.max(), Z.min()
    # z_max, z_min = np.max(Z), np.min(Z)
    print z_max
    print z_min
    
    0.996975591901
    0.0148123771689
    

    13. Create a random vector of size 30 and find the mean value

    Z = np.random.random(10)
    m = Z.mean()
    # m = np.mean(Z)
    print m
    
    0.499048171998
    

    14. Create a 2d array with 1 on the border and 0 inside

    Z = np.ones((5,5))
    Z[1:-1, 1:-1] = 0 # indexing
    print Z
    
    [[ 1.  1.  1.  1.  1.]
     [ 1.  0.  0.  0.  1.]
     [ 1.  0.  0.  0.  1.]
     [ 1.  0.  0.  0.  1.]
     [ 1.  1.  1.  1.  1.]]
    

    15. What is the result of the following expression ?

    0*np.nan #nan
    
    nan
    
    np.nan == np.nan
    
    False
    
    np.inf > np.nan
    
    False
    
    np.nan - np.nan
    
    nan
    
    0.3 == 3 * 0.1
    
    False
    

    16. Create a 5x5 matrix with values 1,2,3,4 just below the diagonal

    Z = np.diag(1+np.arange(4), k=-1)
    print Z
    
    [[0 0 0 0 0]
     [1 0 0 0 0]
     [0 2 0 0 0]
     [0 0 3 0 0]
     [0 0 0 4 0]]
    

    17. Create a 8x8 matrix and fill it with a checkerboard pattern

    Z = np.zeros((8,8),dtype=int)
    Z[1::2,0::2]=1
    Z[0::2,1::2]=1
    print Z
    
    [[0 1 0 1 0 1 0 1]
     [1 0 1 0 1 0 1 0]
     [0 1 0 1 0 1 0 1]
     [1 0 1 0 1 0 1 0]
     [0 1 0 1 0 1 0 1]
     [1 0 1 0 1 0 1 0]
     [0 1 0 1 0 1 0 1]
     [1 0 1 0 1 0 1 0]]
    

    18. Consider a (6,7,8) shape array, what is the index (x,y,z) of the 100th element ?

    print np.unravel_index(100,(6,7,8))
    
    (1, 5, 4)
    

    19. Create a checkerboard 8x8 matrix using the tile function

    Z = np.tile(np.array([[0,1],[1,0]]), (4,4))
    print Z
    
    [[0 1 0 1 0 1 0 1]
     [1 0 1 0 1 0 1 0]
     [0 1 0 1 0 1 0 1]
     [1 0 1 0 1 0 1 0]
     [0 1 0 1 0 1 0 1]
     [1 0 1 0 1 0 1 0]
     [0 1 0 1 0 1 0 1]
     [1 0 1 0 1 0 1 0]]
    

    20. Normalize a 5x5 random matrix

    Z = np.random.random((5,5))
    z_max, z_min = Z.max(), Z.min()
    Z = (Z - z_min)/(z_max - z_min)
    print Z
    
    [[ 0.35432088  0.9860153   0.73550363  0.30350038  0.10499184]
     [ 0.22329659  0.          0.54464366  0.99324627  0.98878285]
     [ 0.4801603   0.08399077  0.43971682  0.71831189  0.79786892]
     [ 1.          0.12234266  0.99166839  0.64018204  0.27405883]
     [ 0.68890375  0.26652723  0.97298099  0.94534027  0.58056662]]
    

    21. Multiply a 5x3 matrix by a 3x2 matrix (real matrix product)

    A = np.ones((5,3))
    B = np.ones((3,2))
    print np.dot(A,B) #or A.dot(B)
    
    [[ 3.  3.]
     [ 3.  3.]
     [ 3.  3.]
     [ 3.  3.]
     [ 3.  3.]]
    

    22. Given a 1D array, negate all elements which are between 3 and 8, in place

    Z = np.arange(11)
    Z[(3 < Z) & (Z <= 8)] *= -1 # boolean index
    print Z
    
    [ 0  1  2  3 -4 -5 -6 -7 -8  9 10]
    

    23. Create a 5x5 matrix with row values ranging from 0 to 4

    Z = np.zeros((5,5))
    Z += np.arange(5) # matrix + row
    print Z
    
    [[ 0.  1.  2.  3.  4.]
     [ 0.  1.  2.  3.  4.]
     [ 0.  1.  2.  3.  4.]
     [ 0.  1.  2.  3.  4.]
     [ 0.  1.  2.  3.  4.]]
    

    24. Consider a generator function that generates 10 integers and use it to build an array

    def generate():
        for x in xrange(10):
            yield x
    
    Z = np.fromiter(generate(), dtype=float, count=-1)
    print Z    
    
    [ 0.  1.  2.  3.  4.  5.  6.  7.  8.  9.]
    

    25. Create a vector of size 10 with values ranging from 0 to 1, both excluded

    Z = np.linspace(0,1,num=12,endpoint=True)[1:-1]
    print Z
    
    [ 0.09090909  0.18181818  0.27272727  0.36363636  0.45454545  0.54545455
      0.63636364  0.72727273  0.81818182  0.90909091]
    

    26. Create a random vector of size 10 and sort it

    Z = np.random.random(10)
    Z.sort()
    print Z
    
    [ 0.02092486  0.10778371  0.1580741   0.17828872  0.28058869  0.63512671
      0.70412522  0.84783555  0.93924023  0.98453489]
    

    27. How to sum a small array faster than np.sum ?

    Z = np.arange(10)
    %timeit np.sum(Z)
    %timeit np.add.reduce(Z)
    
    The slowest run took 21.24 times longer than the fastest. This could mean that an intermediate result is being cached.
    100000 loops, best of 3: 2.08 µs per loop
    The slowest run took 10.39 times longer than the fastest. This could mean that an intermediate result is being cached.
    1000000 loops, best of 3: 1.15 µs per loop
    

    28. Consider two random array A anb B, check if they are equal

    A = np.random.randint(0,2,5)
    B = np.random.randint(0,2,5)
    equal = np.allclose(A,B)
    #Returns True if two arrays are element-wise equal within a tolerance.
    print equal
    
    False
    

    29. Make an array immutable (read-only)

    Z = np.zeros(10, dtype='int')
    Z.flags.writeable = False
    # Z[0] = 1 raise ValueError
    

    30. Consider a random 10x2 matrix representing cartesian coordinates, convert them to polar coordinates

    Z = np.random.random((10,2))
    X, Y = Z[:,0], Z[:,1]
    R = np.sqrt(X**2 + Y**2)
    T = np.arctan2(Y,X)
    print R
    print T
    
    [ 0.97581795  0.59808053  0.4108556   0.53083869  0.27302014  0.36028763
      0.88051885  0.89321379  1.17598494  0.95036096]
    [ 0.49590473  1.55488672  1.42839068  0.06888012  0.22952511  0.71644146
      0.48692754  0.42476661  0.85430172  1.30708871]
    

    31. Create random vector of size 10 and replace the maximum value by 0

    Z = np.random.random(10)
    Z[Z.argmax()] = 0 # Z.argmax()
    print Z
    
    [ 0.79605583  0.          0.43405045  0.74944543  0.87654654  0.04885993
      0.03266925  0.09662387  0.86090177  0.48594978]
    

    32. Create a structured array with x and y coordinates covering the [0,1]x[0,1] area

    Z = np.zeros((10,10), [('x',float),('y',float)])
    Z['x'], Z['y'] = np.meshgrid(np.linspace(0,1,10),
                                 np.linspace(0,1,10))
    

    33. Print the minimum and maximum representable value for each numpy scalar type

    for dtype in [np.int8, np.int32, np.int64]:
        print np.iinfo(dtype).min
        print np.iinfo(dtype).max
    for dtype in [np.float32, np.float64]:
       print(np.finfo(dtype).min)
       print(np.finfo(dtype).max)
       print(np.finfo(dtype).eps)
    
    -128
    127
    -2147483648
    2147483647
    -9223372036854775808
    9223372036854775807
    -3.40282e+38
    3.40282e+38
    1.19209e-07
    -1.79769313486e+308
    1.79769313486e+308
    2.22044604925e-16
    

    34. How to find the closest value (to a given scalar) in an array ?

    Z = np.arange(100)
    v = np.random.uniform(0,100)
    print v
    index = (np.abs(Z -v)).argmin() #argmin()
    print Z[index]
    
    56.5834847025
    57
    

    35. Create a structured array representing a position (x,y) and a color (r,g,b)

     Z = np.zeros(10, [ ('position', [ ('x', float, 1),
                                       ('y', float, 1)]),
                        ('color',    [ ('r', float, 1),
                                       ('g', float, 1),
                                       ('b', float, 1)])])
    print Z
    
    [((0.0, 0.0), (0.0, 0.0, 0.0)) ((0.0, 0.0), (0.0, 0.0, 0.0))
     ((0.0, 0.0), (0.0, 0.0, 0.0)) ((0.0, 0.0), (0.0, 0.0, 0.0))
     ((0.0, 0.0), (0.0, 0.0, 0.0)) ((0.0, 0.0), (0.0, 0.0, 0.0))
     ((0.0, 0.0), (0.0, 0.0, 0.0)) ((0.0, 0.0), (0.0, 0.0, 0.0))
     ((0.0, 0.0), (0.0, 0.0, 0.0)) ((0.0, 0.0), (0.0, 0.0, 0.0))]
    

    36. Consider a random vector with shape (100,2) representing coordinates, find point by point distances

    Z = np.random.random((10,2))
    X,Y = np.atleast_2d(Z[:,0]), np.atleast_2d(Z[:,1])
    D = np.sqrt( (X-X.T)**2 + (Y-Y.T)**2)
    
    import scipy
    import scipy.spatial
    Z = np.random.random((10,2))
    D = scipy.spatial.distance.cdist(Z,Z)
    # print D
    

    37. How to convert a float (32 bits) array into an integer (32 bits) in place ?

    Z = np.arange(10,dtype=np.float32)
    Z = Z.astype(np.int32,copy=False) #astype
    print(Z)
    
    [0 1 2 3 4 5 6 7 8 9]
    

    38. Consider the following file,How to read it ?

    1,2,3,4,5
    6,,,7,8
    ,,9,10,11

    Z = np.genfromtxt('missing.dat',delimiter=",")
    print Z
    
    [[  1.   2.   3.   4.   5.]
     [  6.  nan  nan   7.   8.]
     [ nan  nan   9.  10.  11.]]
    

    39. What is the equivalent of enumerate for numpy arrays ?

    Z = np.arange(9).reshape(3,3)
    for index,value in np.ndenumerate(Z):
        print(index,value)
    
    ((0, 0), 0)
    ((0, 1), 1)
    ((0, 2), 2)
    ((1, 0), 3)
    ((1, 1), 4)
    ((1, 2), 5)
    ((2, 0), 6)
    ((2, 1), 7)
    ((2, 2), 8)
    
    for index in np.ndindex(Z.shape):
        print(index,Z[index])
    
    ((0, 0), 0)
    ((0, 1), 1)
    ((0, 2), 2)
    ((1, 0), 3)
    ((1, 1), 4)
    ((1, 2), 5)
    ((2, 0), 6)
    ((2, 1), 7)
    ((2, 2), 8)
    

    40. Generate a generic 2D Gaussian-like array

    X, Y = np.meshgrid(np.linspace(-1,1,10), np.linspace(-1,1,10))
    D = np.sqrt(X*X+Y*Y)
    sigma, miu = 1.0, 0.0
    G = np.exp((D-miu)**2/(2.0*sigma**2))
    

    41. How to randomly place p elements in a 2D array ?

    n = 10
    p = 3
    Z = np.zeros((n,n))
    index = np.random.choice(np.arange(n*n),p,replace=False)
    np.put(Z,index,1)
    Z
    
    array([[ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.,  0.],
           [ 0.,  0.,  1.,  0.,  0.,  0.,  0.,  0.,  0.,  0.]])
    

    41. How to I sort an array by the nth column ?

    Z = np.random.randint(0,10,(3,3))
    print Z
    print Z[Z[:,1].argsort()]
    
    [[8 0 9]
     [0 6 6]
     [4 4 1]]
    [[8 0 9]
     [4 4 1]
     [0 6 6]]
    

    42. Subtract the mean of each row of a matrix

    X = np.random.randint(4,size=(2,3))
    print X
    Y = X - X.mean(axis=1, keepdims=True)
    print Y
    
    [[2 2 1]
     [1 1 1]]
    [[ 0.33333333  0.33333333 -0.66666667]
     [ 0.          0.          0.        ]]
    

    43. How to tell if a given 2D array has null columns ?

    # numpy.any(a, axis=None, out=None, keepdims=False)
    # Test whether any array element along a given axis evaluates to True.
    Z = np.random.randint(0,3,(3,10))
    print (~Z.any(axis=0)).any()
    
    True
    

    44. Find the nearest value from a given value in an array

    # numpy.ndarray.flat
    # A 1-D iterator over the array.
    # This is a numpy.flatiter instance, which acts similarly to, but is not a subclass of, Python’s built-in iterator object.
    Z = np.random.uniform(0,1,10)
    z = 0.5
    m = Z.flat[np.abs(Z-z).argmin()]
    print m
    
    0.494656507792
    

    45. How to swap two rows of an array ?

    A = np.arange(25).reshape(5,5)
    A[[0,1]] = A[[1,0]]
    print A
    
    [[ 5  6  7  8  9]
     [ 0  1  2  3  4]
     [10 11 12 13 14]
     [15 16 17 18 19]
     [20 21 22 23 24]]
    

    46. How to find the most frequent value in an array ?

    # np.bincount()
    # Count number of occurrences of each value in array of non-negative ints.
    Z = np.random.randint(0,5,10)
    print Z
    print np.bincount(Z)
    print np.bincount(Z).argmax()
    
    [1 0 4 1 1 2 0 1 2 3]
    [2 4 2 1 1]
    1
    

    47. How to get the n largest values of an array?

    # np.random.shuffle(x), Modify a sequence in-place
    # np.argsort(x) Returns the indices that would sort an array.
    # np.argpartition(x)
    Z = np.arange(10)
    np.random.shuffle(Z)
    n = 2
    print Z[np.argsort(Z)[-n:]] # slow
    print Z[np.argpartition(-Z,n)[:n]] # fast
    
    [8 9]
    [9 8]

    相关文章

      网友评论

        本文标题:Numpy练习

        本文链接:https://www.haomeiwen.com/subject/fzoodttx.html