1. 读取数据
rm(list = ls())
options(warn=-1)
suppressMessages(library(Seurat))
#读取上一次保存的seurat对象PBMC
start_time <- Sys.time()
load('./patient1.PBMC.output.Rdata')
end_time <- Sys.time()
end_time - start_time
# Time difference of 5.142311 secs
colP<-c('green4',
'pink',
'#FF7F00',
'orchid',
'#99c9fb',
'dodgerblue2',
'grey30',
'yellow',
'grey60',
'grey',
'red',
'#FB9A99',
'black',
'blue'
)
2. 按时间点分组画图
DimPlot(PBMC, group.by = "TimePoints")
3. 标识感兴趣的基因
allGenes = rownames(raw_dataPBMC)
# 基因列表来自原文
markerGenes <- c(
"CD3D",
"CD3E",
"TRAC",
"IL7R",
"GZMA",
"FCGR3A",
"CD14",
"MS4A1",
"FCER1A"
)
markerGenes %in% allGenes
FeaturePlot(object = PBMC,
features = markerGenes,
cols = c("grey", "blue"),
reduction = "tsne")
4. 亚群注释
# 文件来自参考的笔记,最终来源于原文
n=read.table('celltype-patient1-PBMC.txt',sep = '\t')
n
new.cluster.ids <- as.character(n[,2])
names(new.cluster.ids) <- levels(PBMC)
PBMC <- RenameIdents(PBMC, new.cluster.ids)
DimPlot(PBMC, reduction = "tsne", label = TRUE, pt.size = 0.5, cols = colP) + NoLegend()
5. 不同时间点分开画图
TimePoints = PBMC@meta.data$TimePoints
table(TimePoints)
# 以PBMC_Pre为例
PBMC_Pre = SubsetData(PBMC, TimePoints =='PBMC_Pre')
DimPlot(PBMC_Pre, reduction = "tsne",
cols = colP,
do.label = F)
网友评论