美文网首页机器学习
分类代码模板-python

分类代码模板-python

作者: 灵妍 | 来源:发表于2018-03-02 20:30 被阅读10次

    1、数据预处理
    2、拟合所需要的分类模型
    3、预测测试集结果
    4、混淆矩阵检验预测结果
    5、可视化训练集及模型
    6、可视化测试集及模型
    代码:

    # Classification template
    
    # Importing the libraries
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    
    # Importing the dataset
    dataset = pd.read_csv('Social_Network_Ads.csv')
    X = dataset.iloc[:, [2, 3]].values
    y = dataset.iloc[:, 4].values
    
    # Splitting the dataset into the Training set and Test set
    from sklearn.cross_validation import train_test_split
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
    
    # Feature Scaling
    from sklearn.preprocessing import StandardScaler
    sc = StandardScaler()
    X_train = sc.fit_transform(X_train)
    X_test = sc.transform(X_test)
    
    # Fitting classifier to the Training set
    # Create your classifier here
    
    # Predicting the Test set results
    y_pred = classifier.predict(X_test)
    
    # Making the Confusion Matrix
    from sklearn.metrics import confusion_matrix
    cm = confusion_matrix(y_test, y_pred)
    
    # Visualising the Training set results
    from matplotlib.colors import ListedColormap
    X_set, y_set = X_train, y_train
    X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                         np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    c = ListedColormap(('red', 'green'))(i), label = j)
    plt.title('Classifier (Training set)')
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
    plt.legend()
    plt.show()
    
    # Visualising the Test set results
    from matplotlib.colors import ListedColormap
    X_set, y_set = X_test, y_test
    X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
                         np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
    plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
                 alpha = 0.75, cmap = ListedColormap(('red', 'green')))
    plt.xlim(X1.min(), X1.max())
    plt.ylim(X2.min(), X2.max())
    for i, j in enumerate(np.unique(y_set)):
        plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
                    c = ListedColormap(('red', 'green'))(i), label = j)
    plt.title('Classifier (Test set)')
    plt.xlabel('Age')
    plt.ylabel('Estimated Salary')
    plt.legend()
    plt.show()
    

    相关文章

      网友评论

        本文标题:分类代码模板-python

        本文链接:https://www.haomeiwen.com/subject/ghkzxftx.html