美文网首页数据结构和算法重点关注
数据结构与算法之美-28讲堆和堆排序

数据结构与算法之美-28讲堆和堆排序

作者: 蒋斌文 | 来源:发表于2021-06-19 16:07 被阅读0次

    数据结构与算法之美-28讲堆和堆排序

    特别备注

    本系列非原创,文章原文摘自极客时间-数据结构算法之美,用于平常学习记录。如有侵权,请联系我删除,谢谢!


    我们今天讲另外一种特殊的树,“堆”(Heap)。堆这种数据结构的应用场景非常多,最经典的莫过于堆排序了。堆排序是一种原地的、时间复杂度为O(n\log n)的排序算法。

    前面我们学过快速排序,平均情况下,它的时间复杂度为O(n\log n)。尽管这两种排序算法的时间复杂度都是O(n\log n),甚至堆排序比快速排序的时间复杂度还要稳定,但是,在实际的软件开发中,快速排序的性能要比堆排序好,这是为什么呢?

    现在,你可能还无法回答,甚至对问题本身还有点疑惑。没关系,带着这个问题,我们来学习今天的内容。等你学完之后,或许就能回答出来了。

    如何理解“堆”?

    前面我们提到,堆是一种特殊的树。我们现在就来看看,什么样的树才是堆。我罗列了两点要求,只要满足这两点,它就是一个堆。

    • 堆是一个完全二叉树;
    • 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。

    我分别解释一下这两点。

    第一点,堆必须是一个完全二叉树。还记得我们之前讲的完全二叉树的定义吗?完全二叉树要求,除了最后一层,其他层的节点个数都是满的,最后一层的节点都靠左排列。

    第二点,堆中的每个节点的值必须大于等于(或者小于等于)其子树中每个节点的值。实际上,我们还可以换一种说法,堆中每个节点的值都大于等于(或者小于等于)其左右子节点的值。这两种表述是等价的。

    对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作“小顶堆”。

    定义解释清楚了,你来看看,下面这几个二叉树是不是堆?

    img

    其中第1个和第2个是大顶堆,第3个是小顶堆,第4个不是堆。除此之外,从图中还可以看出来,对于同一组数据,我们可以构建多种不同形态的堆。

    如何实现一个堆?

    要实现一个堆,我们先要知道,堆都支持哪些操作以及如何存储一个堆

    我之前讲过,完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。

    我画了一个用数组存储堆的例子,你可以先看下。

    img

    从图中我们可以看到,数组中下标为i的节点的左子节点,就是下标为i*2的节点,右子节点就是下标为i*2+1的节点,父节点就是下标为\frac{i}{2}的节点。

    知道了如何存储一个堆,那我们再来看看,堆上的操作有哪些呢?我罗列了几个非常核心的操作,分别是往堆中插入一个元素和删除堆顶元素。(如果没有特殊说明,我下面都是拿大顶堆来讲解)。

    1.往堆中插入一个元素

    往堆中插入一个元素后,我们需要继续满足堆的两个特性。

    如果我们把新插入的元素放到堆的最后,你可以看我画的这个图,是不是不符合堆的特性了?于是,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫作堆化(heapify)。

    堆化实际上有两种,从下往上和从上往下。这里我先讲从下往上的堆化方法。

    img

    堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。

    我这里画了一张堆化的过程分解图。我们可以让新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚说的那种大小关系。

    img

    我将上面讲的往堆中插入数据的过程,翻译成了代码,你可以结合着一块看。

    public class Heap {
      private int[] a; // 数组,从下标1开始存储数据
      private int n;  // 堆可以存储的最大数据个数
      private int count; // 堆中已经存储的数据个数
    
      public Heap(int capacity) {
        a = new int[capacity + 1];
        n = capacity;
        count = 0;
      }
    
      public void insert(int data) {
        if (count >= n) return; // 堆满了
        ++count;
        a[count] = data;
        int i = count;
        while (i/2 > 0 && a[i] > a[i/2]) { // 自下往上堆化
          swap(a, i, i/2); // swap()函数作用:交换下标为i和i/2的两个元素
          i = i/2;
        }
      }
     }
    

    2.删除堆顶元素

    从堆的定义的第二条中,任何节点的值都大于等于(或小于等于)子树节点的值,我们可以发现,堆顶元素存储的就是堆中数据的最大值或者最小值。

    假设我们构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。

    这里我也画了一个分解图。不过这种方法有点问题,就是最后堆化出来的堆并不满足完全二叉树的特性。

    img

    实际上,我们稍微改变一下思路,就可以解决这个问题。你看我画的下面这幅图。我们把最后一个节点放到堆顶,然后利用同样的父子节点对比方法。对于不满足父子节点大小关系的,互换两个节点,并且重复进行这个过程,直到父子节点之间满足大小关系为止。这就是从上往下的堆化方法

    因为我们移除的是数组中的最后一个元素,而在堆化的过程中,都是交换操作,不会出现数组中的“空洞”,所以这种方法堆化之后的结果,肯定满足完全二叉树的特性。

    img

    我把上面的删除过程同样也翻译成了代码,贴在这里,你可以结合着看。

    public void removeMax() {
      if (count == 0) return -1; // 堆中没有数据
      a[1] = a[count];
      --count;
      heapify(a, count, 1);
    }
    
    private void heapify(int[] a, int n, int i) { // 自上往下堆化
      while (true) {
        int maxPos = i;
        if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
        if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
        if (maxPos == i) break;
        swap(a, i, maxPos);
        i = maxPos;
      }
    }
    

    我们知道,一个包含n个节点的完全二叉树,树的高度不会超过\log_{2}n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是O(\log n)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是O(\log n)

    如何基于堆实现排序?

    前面我们讲过好几种排序算法,我们再来回忆一下,有时间复杂度是O(n^{2})的冒泡排序、插入排序、选择排序,有时间复杂度是O(n\log n)的归并排序、快速排序,还有线性排序。

    这里我们借助于堆这种数据结构实现的排序算法,就叫作堆排序。这种排序方法的时间复杂度非常稳定,是O(n\log n),并且它还是原地排序算法。如此优秀,它是怎么做到的呢?

    我们可以把堆排序的过程大致分解成两个大的步骤,建堆排序

    1.建堆

    我们首先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。建堆的过程,有两种思路。

    第一种是借助我们前面讲的,在堆中插入一个元素的思路。尽管数组中包含n个数据,但是我们可以假设,起初堆中只包含一个数据,就是下标为1的数据。然后,我们调用前面讲的插入操作,将下标从2n的数据依次插入到堆中。这样我们就将包含n个数据的数组,组织成了堆。

    第二种实现思路,跟第一种截然相反,也是我这里要详细讲的。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化。

    我举了一个例子,并且画了一个第二种实现思路的建堆分解步骤图,你可以看下。因为叶子节点往下堆化只能自己跟自己比较,所以我们直接从第一个非叶子节点开始,依次堆化就行了。

    img

    对于程序员来说,看代码可能更好理解一些,所以,我将第二种实现思路翻译成了代码,你可以看下。

    private static void buildHeap(int[] a, int n) {
      for (int i = n/2; i >= 1; --i) {
        heapify(a, n, i);
      }
    }
    
    private static void heapify(int[] a, int n, int i) {
      while (true) {
        int maxPos = i;
        if (i*2 <= n && a[i] < a[i*2]) maxPos = i*2;
        if (i*2+1 <= n && a[maxPos] < a[i*2+1]) maxPos = i*2+1;
        if (maxPos == i) break;
        swap(a, i, maxPos);
        i = maxPos;
      }
    }
    

    你可能已经发现了,在这段代码中,我们对下标从\frac{n}{2} 开始到1的数据进行堆化,下标是\frac{n}{2}+1n的节点是叶子节点,我们不需要堆化。实际上,对于完全二叉树来说,下标从\frac{n}{2}+1n的节点都是叶子节点。

    现在,我们来看,建堆操作的时间复杂度是多少呢?

    每个节点堆化的时间复杂度是O(\log n),那\frac{n}{2}+1个节点堆化的总时间复杂度是不是就是O(n\log n)呢?这个答案虽然也没错,但是这个值还是不够精确。实际上,堆排序的建堆过程的时间复杂度是O(n)。我带你推导一下。

    因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度k成正比。

    我把每一层的节点个数和对应的高度画了出来,你可以看看。我们只需要将每个节点的高度求和,得出的就是建堆的时间复杂度。

    img

    我们将每个非叶子节点的高度求和,就是下面这个公式:

    img

    这个公式的求解稍微有点技巧,不过我们高中应该都学过:把公式左右都乘以2,就得到另一个公式S2。我们将S2错位对齐,并且用S2减去S1,可以得到S

    img

    S的中间部分是一个等比数列,所以最后可以用等比数列的求和公式来计算,最终的结果就是下面图中画的这个样子。

    img

    因为h=\log_{2}n,代入公式S,就能得到S=O(n),所以,建堆的时间复杂度就是O(n)

    2.排序

    建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。我们把它跟最后一个元素交换,那最大元素就放到了下标为n的位置。

    这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为n的元素放到堆顶,然后再通过堆化的方法,将剩下的n-1个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是n-1的位置,一直重复这个过程,直到最后堆中只剩下标为1的一个元素,排序工作就完成了。

    img

    堆排序的过程,我也翻译成了代码。结合着代码看,你理解起来应该会更加容易。

    // n表示数据的个数,数组a中的数据从下标1到n的位置。
    public static void sort(int[] a, int n) {
      buildHeap(a, n);
      int k = n;
      while (k > 1) {
        swap(a, 1, k);
        --k;
        heapify(a, k, 1);
      }
    }
    

    现在,我们再来分析一下堆排序的时间复杂度、空间复杂度以及稳定性。

    整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是O(n),排序过程的时间复杂度是O(n\log n),所以,堆排序整体的时间复杂度是O(n\log n)

    堆排序不是稳定的排序算法,因为在排序的过程,存在将堆的最后一个节点跟堆顶节点互换的操作,所以就有可能改变值相同数据的原始相对顺序。

    今天的内容到此就讲完了。我这里要稍微解释一下,在前面的讲解以及代码中,我都假设,堆中的数据是从数组下标为1的位置开始存储。那如果从0开始存储,实际上处理思路是没有任何变化的,唯一变化的,可能就是,代码实现的时候,计算子节点和父节点的下标的公式改变了。

    如果节点的下标是i,那左子节点的下标就是2*i+1,右子节点的下标就是2*i+2,父节点的下标就是\frac{i-1}{2}

    解答开篇

    现在我们来看开篇的问题,在实际开发中,为什么快速排序要比堆排序性能好?

    我觉得主要有两方面的原因。

    第一点,堆排序数据访问的方式没有快速排序友好。

    对于快速排序来说,数据是顺序访问的。而对于堆排序来说,数据是跳着访问的。 比如,堆排序中,最重要的一个操作就是数据的堆化。比如下面这个例子,对堆顶节点进行堆化,会依次访问数组下标是1,2,4,8的元素,而不是像快速排序那样,局部顺序访问,所以,这样对CPU缓存是不友好的。

    img

    第二点,对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序。

    我们在讲排序的时候,提过两个概念,有序度和逆序度。对于基于比较的排序算法来说,整个排序过程就是由两个基本的操作组成的,比较和交换(或移动)。快速排序数据交换的次数不会比逆序度多。

    但是堆排序的第一步是建堆,建堆的过程会打乱数据原有的相对先后顺序,导致原数据的有序度降低。比如,对于一组已经有序的数据来说,经过建堆之后,数据反而变得更无序了。

    img

    对于第二点,你可以自己做个试验看下。我们用一个记录交换次数的变量,在代码中,每次交换的时候,我们就对这个变量加一,排序完成之后,这个变量的值就是总的数据交换次数。这样你就能很直观地理解我刚刚说的,堆排序比快速排序交换次数多。

    内容小结

    今天我们讲了堆这种数据结构。堆是一种完全二叉树。它最大的特性是:每个节点的值都大于等于(或小于等于)其子树节点的值。因此,堆被分成了两类,大顶堆和小顶堆。

    堆中比较重要的两个操作是插入一个数据和删除堆顶元素。这两个操作都要用到堆化。插入一个数据的时候,我们把新插入的数据放到数组的最后,然后从下往上堆化;删除堆顶数据的时候,我们把数组中的最后一个元素放到堆顶,然后从上往下堆化。这两个操作时间复杂度都是O(\log n)

    除此之外,我们还讲了堆的一个经典应用,堆排序。堆排序包含两个过程,建堆和排序。我们将下标从\frac{n}{2}1的节点,依次进行从上到下的堆化操作,然后就可以将数组中的数据组织成堆这种数据结构。接下来,我们迭代地将堆顶的元素放到堆的末尾,并将堆的大小减一,然后再堆化,重复这个过程,直到堆中只剩下一个元素,整个数组中的数据就都有序排列了。


    特别备注

    本系列非原创,文章原文摘自极客时间-数据结构算法之美,用于平常学习记录。如有侵权,请联系我删除,谢谢!

    相关文章

      网友评论

        本文标题:数据结构与算法之美-28讲堆和堆排序

        本文链接:https://www.haomeiwen.com/subject/glqdyltx.html