参考:
正确使用多线程同步锁@synchronized()
iOS中的锁
iOS多线程安全详解
iOS 常见知识点(三):Lock
各种锁
1、 简单常见的:
(1)atomic
(2)@synchronized
2、NS对象形式的:
(1)NSLock
(2)NSConditionLock条件锁
(3)NSRecursiveLock递归锁
(4)NSCondition挂起唤醒
3、GCD的:
(1)dispatch_semaphore
(2)dispatch_barrier_async
4、高级的:
(1)OSSpinLock
(2)os_unfair_lock
(3)pthread_mutex_t

atomic
atomic:原子属性,只是为gettet、setter方法加锁
atomic与nonatomic的区别
// nonatomic修饰,会崩溃
for (int i=0; i< 10000; i++) {
dispatch_async(dispatch_get_global_queue(0, 0), ^{
self.obj_nonatomic = [NSObject new];
});
}
// atomic修饰,不崩溃
for (int i=0; i< 10000; i++) {
dispatch_async(dispatch_get_global_queue(0, 0), ^{
self.obj_atomic = [NSObject new];
});
}
atomic只是gettet、setter方法加锁,其他操作会有线程安全问题
@interface ViewController ()
@property (atomic , strong) NSString *info;
@end
@implementation ViewController
- (void)viewDidLoad {
[super viewDidLoad];
//A
dispatch_async(dispatch_get_global_queue(0, 0), ^{
while (1) {
self.info = @"a";
NSLog(@"A--info:%@", self.info);
}
});
//B
dispatch_async(dispatch_get_global_queue(0, 0), ^{
while (1) {
self.info = @"b";
NSLog(@"B--info:%@", self.info);
}
});
// 根据线程安全定义,如果atomic为线程安全A输出应该永远为A--info:a,B输出应该永远为B--info:b
// NSlog会有:A--info:b
}
@end
@synchronized(obj)
- synchronized是使用的递归mutex来做同步。
- @synchronized(nil)不起任何作用
synchronized中传入的object的内存地址,被用作key,通过hash map对应的一个系统维护的递归锁。
所以不管是传入什么类型的object,只要是有内存地址,就能启动同步代码块的效果。
注意:需要合理使用obj,不是全部都用self
// 简单用法
@synchronized(obj) {
//code
}
// 可以嵌套、递归
@synchronized(obj) {
@synchronized(obj) {
//code
}
}
NSLocking
NSLocking协议定义了两个实例方法,lock和unlock对应着加锁与解锁
@protocol NSLocking
- (void)lock;
- (void)unlock;
@end
NSLock、NSConditionLock、NSRecursiveLock、NSCondition对应的实例都可以通过lock/unlock来进行加锁/解锁。
NSLock
@interface NSLock : NSObject <NSLocking> {
@private
void *_priv;
}
// 尝试加锁,如果失败了,并不会阻塞线程,只是立即返回NO
- (BOOL)tryLock;
// 是在指定Date之前尝试加锁,如果在指定时间之前都不能加锁,则返回NO,阻塞线程。
- (BOOL)lockBeforeDate:(NSDate *)limit;
@property (nullable, copy) NSString *name;
@end
简单测试例子:
//主线程中
NSLock *lock = [[NSLock alloc] init];
//线程1
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
[lock lock];
NSLog(@"线程1");
[lock unlock];
NSLog(@"线程1解锁成功");
});
//线程2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
[lock lock];
NSLog(@"线程2");
[lock unlock];
NSLog(@"线程2解锁成功");
});
NSConditionLock条件锁
@interface NSConditionLock : NSObject <NSLocking> {
@private
void *_priv;
}
- (instancetype)initWithCondition:(NSInteger)condition NS_DESIGNATED_INITIALIZER;
@property (readonly) NSInteger condition;
- (void)lockWhenCondition:(NSInteger)condition;
- (void)unlockWithCondition:(NSInteger)condition;
- (BOOL)tryLock;
- (BOOL)lockBeforeDate:(NSDate *)limit;
- (BOOL)tryLockWhenCondition:(NSInteger)condition;
- (BOOL)lockWhenCondition:(NSInteger)condition beforeDate:(NSDate *)limit;
@property (nullable, copy) NSString *name;
@end
condition实现条件锁时(也可以不实现,直接调用协议方法lock),只有符合条件才能上锁,但是解锁为非条件,任意condition都可以解锁,此时设置的condition为下一次条件锁的condition。
伪代码
- (instancetype)initWithCondition:(NSInteger)condition {
if (self =[ [NSConditionLock alloc] init]) {
_condition = condition
}
return self;
}
// 利用condition加锁、解锁时伪代码是这样的
- (void)lockWhenCondition:(NSInteger)condition {
if (_condition == condition) [self lock];
}
- (void)unlockWithCondition:(NSInteger)condition {
[self setValue:@condition forKey:@"condition"];
[self unlock];
}
简单例子:
//主线程中
NSConditionLock *theLock = [[NSConditionLock alloc] init];
//线程1
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
for (int i=0;i<=2;i++)
{
[theLock lock];
NSLog(@"thread1:%d",i);
sleep(2);
[theLock unlockWithCondition:i];
}
});
//线程2
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
[theLock lockWhenCondition:2];
NSLog(@"thread2");
[theLock unlock];
});
/*运行结果
2017-03-04 22:21:29.031 LockDemo[87455:3031878] thread1:0
2017-03-04 22:21:31.105 LockDemo[87455:3031878] thread1:1
2017-03-04 22:21:33.175 LockDemo[87455:3031878] thread1:2
2017-03-04 22:21:35.249 LockDemo[87455:3031879] thread2
*/
NSRecursiveLock递归锁
NSRecursiveLock 是递归锁,他和 NSLock 的区别在于,NSRecursiveLock 可以在一个线程中重复加锁(反正单线程内任务是按顺序执行的,不会出现资源竞争问题),NSRecursiveLock 会记录上锁和解锁的次数,当二者平衡的时候,才会释放锁,其它线程才可以上锁成功。
@interface NSRecursiveLock : NSObject <NSLocking> {
@private
void *_priv;
}
- (BOOL)tryLock;
- (BOOL)lockBeforeDate:(NSDate *)limit;
@property (nullable, copy) NSString *name ;
@end
简单例子
static int i = 10;
- (void)recursiveLock {
[_lock lock];
NSLog(@"NSRecursiveLock--%zd", i--);
if (i >= 0) {
[self recursiveLock];
}
[_lock unlock];
}
NSCondition
NSCondition中有这些方法
- (void)wait; //挂起线程
- (BOOL)waitUntilDate:(NSDate *)limit; //什么时候挂起线程
- (void)signal; // 唤醒一条挂起线程
- (void)broadcast; //唤醒所有挂起线程
使用例子:
NSCondition *_lock = [NSCondition new];
//A
dispatch_async(dispatch_get_global_queue(0, 0), ^{
[_lock lock];
NSLog(@"A线程加锁");
[_lock wait];
NSLog(@"A线程唤醒");
[_lock unlock];
NSLog(@"A线程解锁");
});
//B
dispatch_async(dispatch_get_global_queue(0, 0), ^{
[_lock lock];
NSLog(@"B线程加锁");
[_lock wait];
NSLog(@"B线程唤醒");
[_lock unlock];
NSLog(@"B线程解锁");
});
dispatch_async(dispatch_get_global_queue(0, 0), ^{
sleep(2);
[_lock signal];// 唤醒一条线程
});
/*运行结果
2017-10-20 18:00:59.848350+0800 debug-objc[41375:32423729] A线程加锁
2017-10-20 18:00:59.848624+0800 debug-objc[41375:32423730] B线程加锁
2017-10-20 18:01:01.853165+0800 debug-objc[41375:32423729] A线程唤醒
2017-10-20 18:01:01.853236+0800 debug-objc[41375:32423729] A线程解锁
*/
dispatch_async(dispatch_get_global_queue(0, 0), ^{
sleep(2);
[_lock broadcast];// 唤醒全部
});
/*运行结果
2017-10-20 18:02:58.031822+0800 debug-objc[41428:32430448] A线程加锁
2017-10-20 18:02:58.033322+0800 debug-objc[41428:32430447] B线程加锁
2017-10-20 18:03:00.036548+0800 debug-objc[41428:32430448] A线程唤醒
2017-10-20 18:03:00.037160+0800 debug-objc[41428:32430448] A线程解锁
2017-10-20 18:03:00.037411+0800 debug-objc[41428:32430447] B线程唤醒
2017-10-20 18:03:00.037532+0800 debug-objc[41428:32430447] B线程解锁
*/
GCD的dispatch_semaphore信号量
/*!
* @param value 信号量的起始值,当传入的值小于零时返回NULL
* @result 成功返回一个新的信号量,失败返回NULL
*/
dispatch_semaphore_t dispatch_semaphore_create(long value)
/*!
* @discussion 信号量减1,如果结果小于0,那么等待队列中信号增量到来直到timeout
* @param dsema 信号量
* @param timeout 等待时间,类型为dispatch_time_t,这里有两个宏DISPATCH_TIME_NOW、DISPATCH_TIME_FOREVER
* @result 若等待成功返回0,timeout返回非0
*/
long dispatch_semaphore_wait(dispatch_semaphore_t dsema, dispatch_time_t timeout);
/*!
* @discussion 信号量加1,如果之前的信号量小于0,将唤醒一条等待线程
* @param dsema 信号量
* @result 唤醒一条线程返回非0,否则返回0
*/
long dispatch_semaphore_signal(dispatch_semaphore_t dsema)
简单例子
- (void)semaphore {
dispatch_semaphore_t dsema = dispatch_semaphore_create(1);
dispatch_async(dispatch_get_global_queue(0, 0), ^{
while (1) {
dispatch_semaphore_wait(dsema, DISPATCH_TIME_FOREVER);
_info = @"a";
NSLog(@"A--info:%@", _info);
dispatch_semaphore_signal(dsema);
}
});
dispatch_async(dispatch_get_global_queue(0, 0), ^{
while (1) {
dispatch_semaphore_wait(dsema, DISPATCH_TIME_FOREVER);
_info = @"b";
NSLog(@"B--info:%@", _info);
dispatch_semaphore_signal(dsema);
}
});
}
GCD中“栅栏函数”:dispatch_barrier_async
//同dispatch_queue_create函数生成的concurrent Dispatch Queue队列一起使用
dispatch_queue_t queue = dispatch_queue_create("12312312", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(queue, ^{
NSLog(@"----1");
});
dispatch_async(queue, ^{
NSLog(@"----2");
});
dispatch_barrier_async(queue, ^{
NSLog(@"----barrier");
});
dispatch_async(queue, ^{
NSLog(@"----3");
});
dispatch_async(queue, ^{
NSLog(@"----4");
});
上述代码打印结果总是1 2 –> barrier –>3 4,即1、2总在barrier之前打印,3、4总在barrier之后打印,其中1、2 由于并行处理先后顺序不定,当然3、4也一样。
OSSpinLock
OSSpinLock自旋锁,使用时需导入头文件#import <libkern/OSAtomic.h>
由于自旋锁存在优先级反转问题(可查看YYKit作者的这篇文章 不再安全的 OSSpinLock),在iOS 10.0中被<os/lock.h>中的os_unfair_lock()取代
// 初始化 unlock为0,lock为非0
OSSpinLock spinLock = OS_SPINLOCK_INIT;
// 加锁
OSSpinLockLock(&spinLock);
// 解锁
OSSpinLockUnlock(&spinLock);
// 尝试加锁
BOOL b = OSSpinLockTry(&spinLock);
- (void)OSSpinLock {
OSSpinLock spinLock = OS_SPINLOCK_INIT;
NSLog(@"加锁前:%zd", spinLock);
OSSpinLockLock(&spinLock);
NSLog(@"加锁后:%zd", spinLock);
OSSpinLockUnlock(&spinLock);
NSLog(@"解锁后:%zd", spinLock);
/*运行结果
2017-10-20 18:36:40.237586+0800 debug-objc[41870:32523780] 加锁前:0
2017-10-20 18:36:40.237904+0800 debug-objc[41870:32523780] 加锁后:4294967295
2017-10-20 18:36:40.237955+0800 debug-objc[41870:32523780] 解锁后:0
*/
}
os_unfair_lock
os_unfair_lock iOS 10.0新推出的锁,用于解决OSSpinLock优先级反转问题(用法与OSSpinLock差不多)
// 初始化
os_unfair_lock_t unfairLock = &(OS_UNFAIR_LOCK_INIT);
// 加锁
os_unfair_lock_lock(unfairLock);
// 解锁
os_unfair_lock_unlock(unfairLock);
// 尝试加锁
BOOL b = os_unfair_lock_trylock(unfairLock);
POSIX LOCK
POSIX LOCK为C语言级别的锁,需引入头像文件#import<pthread.h>
pthread_mutex_t
pthread_mutex_init(&lock, NULL);
PTHREAD_MUTEX_NORMAL 缺省类型,也就是普通锁。当一个线程加锁以后,其余请求锁的线程将形成一个等待队列,并在解锁后先进先出原则获得锁。
PTHREAD_MUTEX_ERRORCHECK 检错锁,如果同一个线程请求同一个锁,则返回 EDEADLK,否则与普通锁类型动作相同。这样就保证当不允许多次加锁时不会出现嵌套情况下的死锁。
PTHREAD_MUTEX_RECURSIVE 递归锁,允许同一个线程对同一个锁成功获得多次,并通过多次 unlock 解锁。
PTHREAD_MUTEX_DEFAULT 适应锁,动作最简单的锁类型,仅等待解锁后重新竞争,没有等待队列。
static pthread_mutex_t lock;
- (void)pLock {
pthread_mutex_init(&lock, NULL);
dispatch_async(dispatch_get_global_queue(0, 0), ^{
while (1) {
pthread_mutex_lock(&lock);
_info = @"a";
NSLog(@"A--info:%@", _info);
pthread_mutex_unlock(&lock);
}
});
dispatch_async(dispatch_get_global_queue(0, 0), ^{
while (1) {
pthread_mutex_lock(&lock);
_info = @"b";
NSLog(@"B--info:%@", _info);
pthread_mutex_unlock(&lock);
}
});
}
网友评论