消息队列实现最终一致性

作者: 伊凡的一天 | 来源:发表于2019-03-28 13:39 被阅读218次

考虑一个分布式场景中一个常见的场景:服务A执行某个数据库操作成功后,会发送一条消息到消息队列,现在希望只有数据库操作执行成功才发送这条消息。下面是一些常见的作法:

1. 先执行数据库操作,再发送消息

public void purchaseOrder() {
    orderDao.save(order);
    messageQueue.send(message);
}

有可能order新增成功,发送消息失败。最终形成不一致状态。

2. 先发送消息,再执行数据库操作

public void purchaseOrder() {
    messageQueue.send(message);
    orderDao.save(order);
}

有可能消息发送成功,而order新增失败,从而形成不一致状态。

3. 在数据库事务中,先发送消息,再执行数据库操作

@Transactional
public void purchaseOrder() {
    messageQueue.send(message);
    orderDao.save(order);
}

这里同样无法保证一致性。如果数据库操作成功,然而消息已经发送了,无法进行回滚。

4. 在数据库事务中,先执行数据库操作,再发送消息

@Transactional
public void purchaseOrder() {
    orderDao.save(order);
    messageQueue.send(message);
}

这种方案成功与否,取决于消息队列是否拥有应答机制和事务机制。

应答机制表示producer发送消息后,消息队列能够返回response从而证明消息是否插入成功。

如果消息队列拥有应答机制,将上面的代码改写为:

@Transactional
public void purchaseOrder() {
    orderDao.save(order);
    try{
        kafkaProducer.send(message).get();
    } catch(Exception e)
        throw new RuntimeException("Fail to send message");
    }

这段代码表示如果发送发收到消息队列错误的response,就抛出一个RuntimeException。那么消息发送失败,能够造成数据库操作的回滚。这个方案看似可行,然而存在这样一种情况,如果消息发送成功,而消息队列由于网络原因没有即时返回response,此时消息发送方由于没有及时收到应答从而认为消息发送失败了,因此消息发送方的数据库事务回滚了,然而消息的确已经插入成功,从而造成了最终不一致性。

上面的不一致性可以通过消息的事务机制解决。

事务机制表示消息队列中的消息是否拥有状态,从而决定消费者是否消费该条消息。

Alibaba旗下的开源消息队列RocketMQ以高可用性闻名,它是最早支持事务消息的消息队列。Kafka从版本0.11开始也支持了事务机制。

RoketMQ的事务机制是将消息标记为Prepared状态或者Confirmed状态。处于Prepared状态的消息对consumer不可见。

而Kafka通过Transaction Marker将消息标记为Uncommited或Commited状态。Consumer通过配置isolation-levelread_committedread_uncommitted来决定对哪种类型的消息可见。

5. 消息队列不支持事务消息

如果消息队列不支持事务消息,那么我们的解决方案是,新增一张message表,并开启一个定时任务扫描这张message表,将所有状态为prepared的message发送给消息队列,发送成功后,将message状态置为confirmed。

代码如下:

@Transactional
public void purchaseOrder() {
    orderDao.save(order);
    messageService.save(message);
}

此时插入order和插入message的逻辑处于同一个数据库事务,通过后台的定时程序不断扫描message表,因此一定能够保证消息被成功投递到消息消费方。

这个方案存在的一个问题是,有可能后台任务发送消息成功后宕机了,从而没有来得及将已发送的message状态置为confirmed。因此下一次扫描message表时,会重复发送该条消息。这就是at least once delivery

由于at least once delivery的特性,consumer有可能收到重复的数据。此时可以在consumer端建立一张message_consume表,来判断消息是否已经消费过,如果已经消费过,那么就直接丢弃该消息。

相关文章

  • RabbitMQ实现消息的最终一致性

    通过rabbit死信队列实现消息的最终一致性 配置消费队列 配置死信队列 被拒绝的消息会进入死信队列 正常数据消费...

  • 2020-04-22

    最终一致性: 借助可靠消息队列来实现TCC(try-confirm-cancel): 借助补偿来做回滚: 调用链要...

  • 消息队列实现最终一致性

    考虑一个分布式场景中一个常见的场景:服务A执行某个数据库操作成功后,会发送一条消息到消息队列,现在希望只有数据库操...

  • 通过消息队列实现最终一致性

    背景 不同于单一架构应用(Monolith), 分布式环境下, 进行事务操作将变得困难, 因为分布式环境通常会有多...

  • 分布式事务技术资料

    基于消息队列最终一致性:https://github.com/yu199195/myth TCC型解决方案:htt...

  • springboot项目架构(4)activemq、rabbit

    消息队列实现 支持的消息队列 ActiveMq RabbitMq RocketMq Kafka 各个队列实现队列与...

  • 消息中间件

    消息中间件,也可以叫做中央消息队列或者是消息队列(区别于本地消息队列,本地消息队列指的是 JVM 内实现的队列实现...

  • nsq笔记[一]:设计架构

    NSQ是基于Go语言的实时分布式消息平台,设计用以完成日均亿级的大规模消息服务,可以用于基于最终一致性的消息队列。...

  • 分布式事务之解决方案(可靠消息最终一致性)

    5. 分布式事务解决方案之可靠消息最终一致性 5.1. 什么是可靠消息最终一致性事务 可靠消息最终一致性方案是指当...

  • 消息队列技术点梳理(思维导图版)

    消息队列作为服务/应用之间的通信中间件,可以起到业务耦合、广播消息、保证最终一致性以及错峰流控(克服短板瓶颈)等作...

网友评论

    本文标题:消息队列实现最终一致性

    本文链接:https://www.haomeiwen.com/subject/gqlqbqtx.html