一、ELK简介
ELK是当下流行的日志监控系统。ELK是Elasticsearch、Logstash、Kibana三个软件的统称。
在ELK日志监控系统中,Logstash负责读取和结构化各类日志+发送给Elasticsearch,Elasticsearch负责存储Logstash发送过来的日志+响应Kibana的查询,Kibana负责从Elasticsearch查询内容+在web界面中向用户展示。
在一个典型的使用场景下(ELK):用Elasticsearch作为后台数据的存储,kibana用来前端的报表展示。Logstash在其过程中担任搬运工的角色,它为数据存储,报表查询和日志解析创建了一个功能强大的管道链。
ELK 常用架构及使用场景:
-
最简单架构
在这种架构中,只有一个 Logstash、Elasticsearch 和 Kibana 实例。Logstash 通过输入插件从多种数据源(比如日志文件、标准输入 Stdin 等)获取数据,再经过滤插件加工数据,然后经 Elasticsearch 输出插件输出到 Elasticsearch,通过 Kibana 展示。
最简单架构 -
Logstash 作为日志搜集器
这种架构是对上面架构的扩展,把一个 Logstash 数据搜集节点扩展到多个,分布于多台机器,将解析好的数据发送到 Elasticsearch server 进行存储,最后在 Kibana 查询、生成日志报表等。
Logstash 作为日志搜集器
这种结构因为需要在各个服务器上部署 Logstash,而它比较消耗 CPU 和内存资源,所以比较适合计算资源丰富的服务器,否则容易造成服务器性能下降,甚至可能导致无法正常工作。
- Beats 作为日志搜集器
这种架构引入 Beats 作为日志搜集器。目前 Beats 包括四种:
Packetbeat(搜集网络流量数据);
Topbeat(搜集系统、进程和文件系统级别的 CPU 和内存使用情况等数据);
Filebeat(搜集文件数据);
Winlogbeat(搜集 Windows 事件日志数据)。
Beats 将搜集到的数据发送到 Logstash,经 Logstash 解析、过滤后,将其发送到 Elasticsearch 存储,并由 Kibana 呈现给用户。
Beats 作为日志搜集器 这种架构解决了 Logstash 在各服务器节点上占用系统资源高的问题。相比 Logstash,Beats 所占系统的 CPU 和内存几乎可以忽略不计。另外,Beats 和 Logstash 之间支持 SSL/TLS 加密传输,客户端和服务器双向认证,保证了通信安全。
因此这种架构适合对数据安全性要求较高,同时各服务器性能比较敏感的场景。
- 引入消息队列机制的架构
这种架构使用 Logstash 从各个数据源搜集数据,然后经消息队列输出插件输出到消息队列中。目前 Logstash 支持 Kafka、Redis、RabbitMQ 等常见消息队列。然后 Logstash 通过消息队列输入插件从队列中获取数据,分析过滤后经输出插件发送到 Elasticsearch,最后通过 Kibana 展示。
这种架构适合于日志规模比较庞大的情况。但由于 Logstash 日志解析节点和 Elasticsearch 的负荷比较重,可将他们配置为集群模式,以分担负荷。引入消息队列,均衡了网络传输,从而降低了网络闭塞,尤其是丢失数据的可能性,但依然存在 Logstash 占用系统资源过多的问题。
- 基于 Filebeat 架构的配置部署
Filebeat 已经完全替代了 Logstash-Forwarder 成为新一代的日志采集器,同时鉴于它轻量、安全等特点,越来越多人开始使用它。
因为免费的 ELK 没有任何安全机制,所以这里使用了 Nginx 作反向代理,避免用户直接访问 Kibana 服务器。加上配置 Nginx 实现简单的用户认证,一定程度上提高安全性。另外,Nginx 本身具有负载均衡的作用,能够提高系统访问性能。
二、
- Elasticsearch master节点、 data 节点、 client 节点的区别与各自特点
master节点
主要功能是维护元数据,管理集群各个节点的状态,数据的导入和查询都不会走master节点,所以master节点的压力相对较小,因此master节点的内存分配也可以相对少些;但是master节点是最重要的,如果master节点挂了或者发生脑裂了,你的元数据就会发生混乱,那样你集群里的全部数据可能会发生丢失,所以一定要保证master节点的稳定性。
`data节点
是负责数据的查询和导入的,它的压力会比较大,它需要分配多点的内存,选择服务器的时候最好选择配置较高的机器(大内存,双路CPU,SSD... 土豪~);data node要是坏了,可能会丢失一小份数据。
client节点
是作为任务分发用的,它里面也会存元数据,但是它不会对元数据做任何修改。client node存在的好处是可以分担下data node的一部分压力;为什么client node能分担data node的一部分压力?因为es的查询是两层汇聚的结果,第一层是在data node上做查询结果汇聚,然后把结果发给client node,client node接收到data node发来的结果后再做第二次的汇聚,然后把最终的查询结果返回给用户;所以我们看到,client node帮忙把第二层的汇聚工作处理了,自然分担了data node的压力。
这里,我们可以举个例子,当你有个大数据查询的任务(比如上亿条查询任务量)丢给了es集群,要是没有client node,那么压力直接全丢给了data node,如果data node机器配置不足以接受这么大的查询,那么就很有可能挂掉,一旦挂掉,data node就要重新recover,重新reblance,这是一个异常恢复的过程,这个过程的结果就是导致es集群服务停止... 但是如果你有client node,任务会先丢给client node,client node要是处理不来,顶多就是client node停止了,不会影响到data node,es集群也不会走异常恢复。
对于es 集群为何要设计这三种角色的节点,也是从分层逻辑去考虑的,只有把相关功能和角色划分清楚了,每种node各尽其责,才能发挥出分布式集群的效果。
- ElasticSearch怎样设置 master、data 和 client 节点
在生产环境下,如果不修改elasticsearch节点的角色信息,在高数据量,高并发的场景下集群容易出现脑裂等问题。
默认情况下,elasticsearch 集群中每个节点都有成为主节点的资格,也都存储数据,还可以提供查询服务。这些功能是由两个属性控制的。
1. node.master
2. node.data
默认情况下这两个属性的值都是true。
node.master:这个属性表示节点是否具有成为主节点的资格
注意:此属性的值为 true,并不意味着这个节点就是主节点。因为真正的主节点,是由多个具有主节点资格的节点进行选举产生的。所以,这个属性只是代表这个节点是不是具有主节点选举资格。
node.data:这个属性表示节点是否存储数据。
四种组合
1. node.master: true AND node.data: true AND node.ingest: true
这种组合表示这个节点既有成为主节点的资格,又可以存储数据,还可以作为预处理节点,这个时候如果某个节点被选举成为了真正的主节点,那么他还要存储数据,这样对于这个节点的压力就比较大了。
elasticsearch 默认是:每个节点都是这样的配置,在测试环境下这样做没问题。实际工作中建议不要这样设置,这样相当于 主节点 和 数据节点 的角色混合到一块了。
2. node.master: false AND node.data: true AND node.ingest: false
这种组合表示这个节点没有成为主节点的资格,也就不参与选举,只会存储数据。这个节点我们称为 data(数据)节点。在集群中需要单独设置几个这样的节点负责存储数据。后期提供存储和查询服务
3. node.master: true AND node.data: false AND node.ingest: false
这种组合表示这个节点不会存储数据,有成为主节点的资格,可以参与选举,有可能成为真正的主节点。这个节点我们称为master节点
4. node.master: false AND node.data: false AND node.ingest: true
这种组合表示这个节点即不会成为主节点,也不会存储数据,这个节点的意义是作为一个 client(客户端)节点,主要是针对海量请求的时候可以进行负载均衡。在新版 ElasticSearch5.x 之后该节点称之为:coordinate 节点,其中还增加了一个叫:ingest 节点,用于预处理数据(索引和搜索阶段都可以用到),当然,作为一般应用是不需要这个预处理节点做什么额外的预处理过程,那么这个节点和我们称之为 client 节点之间可以看做是等同的,我们在代码中配置访问节点就都可以配置这些 ingest 节点即可。
网友评论