美文网首页
说明生活中遇到的二叉树,用java实现二叉树

说明生活中遇到的二叉树,用java实现二叉树

作者: bug_华 | 来源:发表于2017-09-29 10:16 被阅读0次

    这是组合设计模式。
    我有很多个(假设10万个)数据要保存起来,以后还需要从保存的这些数据中检索是否存在某个数据,(我想说出二叉树的好处,该怎么说呢?那就是说别人的缺点),假如存在数组中,那么,碰巧要找的数字位于99999那个地方,那查找的速度将很慢,因为要从第1个依次往后取,取出来后进行比较。平衡二叉树(构建平衡二叉树需要先排序,我们这里就不作考虑了)可以很好地解决这个问题,但二叉树的遍历(前序,中序,后序)效率要比数组低很多

    public class BinaryTree {  
      
        char data;                  //根节点  
        BinaryTree leftChild;       //左孩子  
        BinaryTree rightChild;      //右孩子  
          
        public BinaryTree() {  
              
        }  
          
        public void visit() {  
            System.out.println(this.data);  
        }  
          
        public BinaryTree(char data) {  
            this.data = data;  
            this.leftChild = null;  
            this.rightChild = null;  
        }  
      
        public BinaryTree getLeftChild() {  
            return leftChild;  
        }  
      
        public void setLeftChild(BinaryTree leftChild) {  
            this.leftChild = leftChild;  
        }  
      
        public BinaryTree getRightChild() {  
            return rightChild;  
        }  
      
        public void setRightChild(BinaryTree rightChild) {  
            this.rightChild = rightChild;  
        }  
      
        public char getData() {  
            return data;  
        }  
      
        public void setData(char data) {  
            this.data = data;  
        }  
      
    }  
    

    先序遍历思想:根左右。首先遍历根节点,然后遍历左子树和右子树。

    public class VisitBinaryTree {  
      
        //先序遍历非递归算法  
        private void preOrder(BinaryTree root) {  
      
            if(root!=null) {  
                  
                Stack<BinaryTree> stack = new Stack<BinaryTree>();  
                  
                for (BinaryTree node = root; !stack.empty() || node != null;) {  
                      
                    //当遍历至节点位空的时候出栈  
                    if(node == null) {  
                        node = stack.pop();  
                    }  
                      
                    node.visit();  
                      
                    //遍历右孩子存入栈内  
                    if(node.getRightChild()!=null) {  
                        stack.push(node.getRightChild());  
                    }  
                      
                    //遍历左子树节点  
                    node = node.getLeftChild();  
                      
                }  
                  
            }  
              
        }  
          
        //先序遍历递归算法  
        public void preOrderRecursion(BinaryTree root) {  
            if(root!=null) {  
                root.visit();  
                preOrderRecursion(root.getLeftChild());  
                preOrderRecursion(root.getRightChild());  
            }  
        }  
    }  
    

    测试代码:

    public static void main(String args[]) {  
              
             BinaryTree node = new BinaryTree('A');    
           <span style="white-space:pre">     </span> BinaryTree root = node;    
            <span style="white-space:pre">    </span> BinaryTree nodeL1;  
           <span style="white-space:pre">     </span> BinaryTree nodeL;  
           <span style="white-space:pre">     </span> BinaryTree nodeR;  
           <span style="white-space:pre">     </span> node.setLeftChild(new BinaryTree('B'));    
           <span style="white-space:pre">     </span> node.setRightChild(new BinaryTree('C'));    
                
           <span style="white-space:pre">     </span> nodeL1 = node.getLeftChild();    
          <span style="white-space:pre">       </span> nodeL1.setLeftChild(new BinaryTree('D'));    
           <span style="white-space:pre">     </span> nodeL1.setRightChild(new BinaryTree('E'));   
              
           <span style="white-space:pre">     </span> nodeL = nodeL1.getLeftChild();    
           <span style="white-space:pre">     </span> nodeL.setLeftChild(new BinaryTree('F'));  
              
           <span style="white-space:pre">     </span> node = node.getRightChild();    
            <span style="white-space:pre">    </span> node.setLeftChild(new BinaryTree('G'));    
            <span style="white-space:pre">    </span> node.setRightChild(new BinaryTree('H'));    
              
            <span style="white-space:pre">    </span> nodeR = node.getLeftChild();    
            <span style="white-space:pre">    </span> nodeR.setLeftChild(new BinaryTree('I'));    
            <span style="white-space:pre">    </span> nodeR.setRightChild(new BinaryTree('J'));   
              
            <span style="white-space:pre">    </span> VisitBinaryTree vt= new VisitBinaryTree();    
              
            //先序遍历递归和非递归测试  
            vt.preOrder(root);  
            vt.preOrderRecursion(root);  
      
        }  
    

    中序遍历算法

        public void inOrder(BinaryTree root) {  
              //中序遍历的非递归算法  
            if(root!=null) {  
                  
                Stack<BinaryTree> stack = new Stack<BinaryTree>();  
                  
                for (BinaryTree node = root; !stack.empty() || node != null; ) {  
                      
                    //寻找最左的左子树节点,并将遍历的左节点进栈  
                    while(node!=null) {  
                        stack.push(node);  
                        node = node.getLeftChild();  
                    }  
                      
                    if(!stack.empty()) {  
                        node = stack.pop();      //出栈  
                        node.visit();            //读取节点值  
                        node = node.getRightChild();  
                    }  
                }  
            }  
        }  
          
        //中序遍历的递归算法  
        public void inOrderRecursion (BinaryTree root) {  
                  
                if(root!=null) {  
                    inOrderRecursion(root.getLeftChild());  
                    root.visit();  
                    inOrderRecursion(root.getRightChild());  
                }  
                  
        }  
    

    测试代码:

    public static void main(String args[]) {  
              
        BinaryTree node = new BinaryTree('A');    
            BinaryTree root = node;    
            BinaryTree nodeL1;  
            BinaryTree nodeL;  
            BinaryTree nodeR;  
            node.setLeftChild(new BinaryTree('B'));    
            node.setRightChild(new BinaryTree('C'));    
                
            nodeL1 = node.getLeftChild();    
            nodeL1.setLeftChild(new BinaryTree('D'));    
            nodeL1.setRightChild(new BinaryTree('E'));   
              
            nodeL = nodeL1.getLeftChild();    
            nodeL.setLeftChild(new BinaryTree('F'));  
              
            node = node.getRightChild();    
            node.setLeftChild(new BinaryTree('G'));    
            node.setRightChild(new BinaryTree('H'));    
              
            nodeR = node.getLeftChild();    
            nodeR.setLeftChild(new BinaryTree('I'));    
            nodeR.setRightChild(new BinaryTree('J'));   
              
            VisitBinaryTree vt= new VisitBinaryTree();    
              
            //中序遍历递归和非递归测试  
            vt.inOrder(root);  
            vt.inOrderRecursion(root);  
      
        }  
    

    后序遍历:

    //后序遍历非递归算法  
        private void postOrder(BinaryTree root) {  
            if(root!=null) {  
                Stack<BinaryTree> stack = new Stack<BinaryTree>();  
                  
                for (BinaryTree node = root; !stack.empty() || node != null;) {  
                    while(root!=null) {  
                        stack.push(root);  
                        root = root.getLeftChild();  
                    }  
                      
                    while(!stack.empty() && root == stack.peek().getRightChild()) {  
                        root = stack.pop();    
                        root.visit();    
                    }  
                      
                    if (stack.empty()) {    
                        return;    
                    } else {    
                        root = stack.peek().getRightChild();    
                    }    
                }  
            }  
        }  
          
        //后序遍历递归算法  
        private void postOrderRecursion(BinaryTree root) {  
            if(root!=null) {  
                postOrderRecursion(root.getLeftChild());  
                postOrderRecursion(root.getRightChild());  
                root.visit();  
            }  
        }  
    

    测试代码

    public static void main(String args[]) {  
              
        BinaryTree node = new BinaryTree('A');    
            BinaryTree root = node;    
            BinaryTree nodeL1;  
            BinaryTree nodeL;  
            BinaryTree nodeR;  
            node.setLeftChild(new BinaryTree('B'));    
            node.setRightChild(new BinaryTree('C'));    
                
            nodeL1 = node.getLeftChild();    
            nodeL1.setLeftChild(new BinaryTree('D'));    
            nodeL1.setRightChild(new BinaryTree('E'));   
              
            nodeL = nodeL1.getLeftChild();    
            nodeL.setLeftChild(new BinaryTree('F'));  
              
            node = node.getRightChild();    
            node.setLeftChild(new BinaryTree('G'));    
            node.setRightChild(new BinaryTree('H'));    
              
            nodeR = node.getLeftChild();    
            nodeR.setLeftChild(new BinaryTree('I'));    
            nodeR.setRightChild(new BinaryTree('J'));   
              
            VisitBinaryTree vt= new VisitBinaryTree();    
              
            //后序遍历递归和非递归测试  
            vt.postOrder(root);  
            vt.postOrderRecursion(root);  
      
        }  
    

    相关文章

      网友评论

          本文标题:说明生活中遇到的二叉树,用java实现二叉树

          本文链接:https://www.haomeiwen.com/subject/gsobextx.html