美文网首页
三、垃圾收集器与内存分配策略

三、垃圾收集器与内存分配策略

作者: 小柏不是大白 | 来源:发表于2017-06-26 15:35 被阅读5次

    1、对象已死?

    在对里面存放着Java世界中几乎所有的对象实例,垃圾收集器在对堆进行回收前,第一件事情就是要确定这些对象之中那些还存活着,哪些已经死去(即不可能再被任何途径使用的对象)。

    1.1 引用计数算法

    给对象添加一个引用计数器,每当有一个地方引用它时,计数器值就加1;当引用失效时,计数器值就减1;任何时刻计数器为0的对象就是不可能再被使用。

    优点:实现简单,判定效率也很高

    缺点:很难解决对象之间相互循环引用的问题

    1.2 可达性分析算法

    通过一系列的称为“GC Roots”的对象作为起始点。从这些节点开始向下搜素。搜素所走过的路程称为引用链,当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。如图:

    可达性分析算法判定对象是否可回收

    在Java语言中,可作为GC Roots的对象包括下面几种:

    虚拟机栈(栈帧中的本地变量表)中引用的对象

    方法区中类静态属性引用的对象

    方法区中常量引用的对象

    本地栈中JNI(即一般说的Native方法)引用的对象

    1.3 再谈引用

    传统定义:如果reference类型的数据中存储的数值代表的是另外一块内存的起始地址,就称这块内存代表着引用。

    如今:引用分为强引用、软引用、弱引用、虚引用、

    强引用:只要强引用还存在,垃圾收集器永远不会回收掉被引用的对象,类似 Object object=new Object()

    软引用:用来描述一些还有用但并非必须的对象。对于软引用关联着的对象,在系统将要发生内存溢出异常之前,将会把这些对象列进回收范围之中进行第二次回收

    弱引用:用来描述非必须对象,但是其强度比软引用更弱一些,被弱引用关联的对象只能生存到下一次垃圾收集发生之前。当垃圾收集器工作时,无论当前内存是否足够,都会回收掉只被弱引用关联的对象

    虚引用:也被称为幽灵引用或者幻影引用,是最弱的一种引用关系。一个对象是否有虚引用的存在,完全不会对其生存时间构成影响,也无法通过虚引用来取得一个对象实例。为一个对象设置虚引用关联的唯一目的就是能在这个对象被回收时收到一个系统通知。

    1.4 生存还是死亡

    在可达性分析算法中不可达的对象,也并非是“非死不可”的,这时候它们暂时处于“缓刑”阶段,要真正宣告一个对象死亡,至少要经历两次标记过程:如果对象在进行可达性分析后发现没有与GC Roots相连接的引用链,那它将会被第一次标记并且进行一次刷选,刷选条件是此对象是否有必要执行finalize()方法。当对象没有覆盖finalize方法,或者finalize方法已经被虚拟机调用过,虚拟机将这两种情况都视为“没有必要执行”。

    如果这个对象被判定为有必要执行finalize()方法,那么这个对象将会放置在一个叫做F-Queue的队列之中,并在稍后由一个由虚拟机自动建立的、低优先级的Finalizer线程去执行它。

    这里所谓的“执行”是指虚拟机会触发这个方法,但并不承诺会等待它运行结束,这样做的原因是,如果一个对象在finalize()方法中执行缓慢,或者发生了死循环(更极端的情况),将很可能会导致F-Queue队列中其他对象永久处于等待,甚至导致整个内存回收系统崩溃。

    任何一个对象的finalize()方法都只会被系统自动调用一次,如果对象面临下一次回收,它的finalize()方法不会被再次执行

    1.5 回收方法区

    方法区的垃圾收集主要回收两部分内容:废弃常量和无用的类

    回收废弃常量与回收Java堆中的对象非常类似:假如一个字符串“abc”已经进入了常量池中,但是当前系统没有任何一个String对象是叫做“abc”的,换句话说,就是没有任何String对象引用常量池中的“abc”常量,也没有比其他敌法引用了这个字面量,如果这时发生内存回收,而且必要的话,这个“abc”常量就会被系统清理出常量池。

    判断一个类是否“无用的类”的条件:

    该类所有的实例都已经被回收,也就是Java堆中不存在该类的任何实例

    加载该类的ClassLoader已被回收

    该类对应的java.lang.Class对象没有在任何地方被引用,五大在任何地方通过反射访问该类的方法

    虚拟机可以对满足上述3个条件的无用类进行回收。。。

    2 垃圾收集算法

    2.1 标记-清除算法

    算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收所有被标记的对象。

    不足:效率问题,标记和清除两个过程的效率都不高;空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致以后在程序运行过程中需要分配较大对象时,无法找到足够连续内存而不得不提前触发另一次垃圾收集动作

    “标记-清除”算法示意图

    2.2 复制算法

    将可用内存按容量划分为大小相等的两块,每次只使用其中的一块,将这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

    优点:这样使得每次都是对整个半区进行内存回收,内存分配时也不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。

    缺点:将内存缩小为原来的一半

    复制算法示意图

    现在的商业虚拟机都采用这种收集算法来回收新生代:

    将内存分为一块较大的Eden空间和两块较小的Survivor空间,每次使用Eden和其中一块Survivor [1] 。当回收时,将Eden和Survivor中还存活着的对象一次性地复制到另外一块Survivor空间上,最后清理掉Eden和刚才用过的Survivor空间

    2.3 标记-整理算法

    标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存

    2.4 分代收集算法

    当前商业虚拟机的垃圾收集都采用“分代收集”(Generational  Collection)算法,这种算法并没有什么新的思想,只是根据对象存活周期的不同将内存划分为几块

    一般是把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。

    在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。

    而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记—清理”或者“标记—整理”算法来进行回收

    3 HotSpot的算法实现

    3.1 枚举根节点

    当执行系统停顿下来后,并不需要一个不漏地检查完所有执行上下文和全局的引用位置,虚拟机应当是有办法直接得知哪些地方存放着对象引用。在HotSpot的实现中,是使用一组称为OopMap的数据结构来达到这个目的的,在类加载完成的时候,HotSpot就把对象内什么偏移量上是什么类型的数据计算出来,在JIT编译过程中,也会在特定的位置记录下栈和寄存器中哪些位置是引用。这样,GC在扫描时就可以直接得知这些信息了。

    3.2 安全点

    HotSpot也的确没有为每条指令都生成OopMap,前面已经提到,只是在“特定的位置”记录了这些信息,这些位置称为安全点(Safepoint),即程序执行时并非在所有地方都能停顿下来开始GC,只有在到达安全点时才能暂停。

    安全点的选定基本上是以程序“是否具有让程序长时间执行的特征”为标准进行选定的——因为每条指令执行的时间都非常短暂,程序不太可能因为指令流长度太长这个原因而过长时间运行,“长时间执行”的最明显特征就是指令序列复用,例如方法调用、循环跳转、异常跳转等,所以具有这些功能的指令才会产生Safepoint。

    对于Sefepoint,另一个需要考虑的问题是如何在GC发生时让所有线程(这里不包括执行JNI调用的线程)都“跑”到最近的安全点上再停顿下来。这里有两种方案可供选择:抢先式中断(Preemptive Suspension)和主动式中断(Voluntary Suspension),

    抢先式中断:不需要线程的执行代码主动去配合,在GC发生时,首先把所有线程全部中断,如果发现有线程中断的地方不在安全点上,就恢复线程,让它“跑”到安全点上。

    主动式中断:当GC需要中断线程的时候,不直接对线程操作,仅仅简单地设置一个标志,各个线程执行时主动去轮询这个标志,发现中断标志为真时就自己中断挂起。轮询标志的地方和安全点是重合的,另外再加上创建对象需要分配内存的地方

    3.3 安全区域

    需要安全区域的原因:

    所谓的程序不执行就是没有分配CPU时间,典型的例子就是线程处于Sleep状态或者Blocked状态,这时候线程无法响应JVM的中断请求,“走”到安全的地方去中断挂起,JVM也显然不太可能等待线程重新被分配CPU时间。

    安全区域:指在一段代码片段之中,引用关系不会发生变化。在这个区域中的任意地方开始GC都是安全的

    4 垃圾收集器

    收集算法是内存回收的方法论,那么垃圾收集器就是内存回收的具体实现

    HotSpot虚拟机的垃圾收集器

    5 内存分配与回收策略

    Java技术体系中所提倡的自动内存管理最终可以归结为自动化地解决了两个问题:给对象分配内存以及回收分配给对象的内存

    对象的内存分配,往大方向讲,就是在堆上分配(但也可能经过JIT编译后被拆散为标量类型并间接地栈上分配 [1] ),对象主要分配在新生代的Eden区上,如果启动了本地线程分配缓冲,将按线程优先在TLAB上分配。

    5.1 对象优先分配在Eden分配

    大多数情况下,对象在新生代Eden区中分配。当Eden区没有足够空间进行分配时,虚拟机将发起一次Minor GC。

    新生代GC(Minor GC):指发生在新生代的垃圾收集动作,因为Java对象大多都具备朝生夕灭的特性,所以Minor GC非常频繁,一般回收速度也比较快。

    老年代GC(Major GC/Full GC):指发生在老年代的GC,出现了Major GC,经常会伴随至少一次的Minor GC(但非绝对的,在Parallel Scavenge收集器的收集策略里就有直接进行Major GC的策略选择过程)。Major GC的速度一般会比Minor GC慢10倍以上。

    5.2 大对象直接进入老年代

    所谓的大对象是指,需要大量连续内存空间的Java对象,最典型的大对象就是那种很长的字符串以及数组(笔者列出的例子中的byte[]数组就是典型的大对象)

    5.3 长期存活的对象将进入老年代

    虚拟机给每个对象定义了一个对象年龄(Age)计数器。如果对象在Eden出生并经过第一次Minor GC后仍然存活,并且能被Survivor容纳的话,将被移动到Survivor空间中,并且对象年龄设为1。对象在Survivor区中每“熬过”一次Minor GC,年龄就增加1岁,当它的年龄增加到一定程度(默认为15岁),就将会被晋升到老年代中。

    5.4 动态对象年龄判定

    虚拟机并不是永远地要求对象的年龄必须达到了MaxTenuringThreshold才能晋升老年代,如果在Survivor空间中相同年龄所有对象大小的总和大于Survivor空间的一半,年龄大于或等于该年龄的对象就可以直接进入老年代,无须等到MaxTenuringThreshold中要求的年龄。

    5.5 空间分配担保

    在发生Minor GC之前,虚拟机会先检查老年代最大可用的连续空间是否大于新生代所有对象总空间,如果这个条件成立,那么Minor GC可以确保是安全的。如果不成立,则虚拟机会查看HandlePromotionFailure设置值是否允许担保失败。如果允许,那么会继续检查老年代最大可用的连续空间是否大于历次晋升到老年代对象的平均大小,如果大于,将尝试着进行一次Minor GC,尽管这次Minor GC是有风险的;如果小于,或者HandlePromotionFailure设置不允许冒险,那这时也要改为进行一次Full GC

    相关文章

      网友评论

          本文标题:三、垃圾收集器与内存分配策略

          本文链接:https://www.haomeiwen.com/subject/gtsfcxtx.html