锁的归类
⾃旋锁:线程反复检查锁变量是否可⽤。由于线程在这⼀过程中保持执⾏,
因此是⼀种忙等待。⼀旦获取了⾃旋锁,线程会⼀直保持该锁,直⾄显式释
放⾃旋锁。 ⾃旋锁避免了进程上下⽂的调度开销,因此对于线程只会阻塞很
短时间的场合是有效的。
互斥锁:是⼀种⽤于多线程编程中,防⽌两条线程同时对同⼀公共资源(⽐
如全局变量)进⾏读写的机制。该⽬的通过将代码切⽚成⼀个⼀个的临界区
⽽达成
这⾥属于互斥锁的有:
• NSLock
• pthread_mutex
• @synchronized
条件锁:就是条件变量,当进程的某些资源要求不满⾜时就进⼊休眠,也就
是锁住了。当资源被分配到了,条件锁打开,进程继续运⾏
• NSCondition
• NSConditionLock
递归锁:就是同⼀个线程可以加锁N次⽽不会引发死锁
• NSRecursiveLock
• pthread_mutex(recursive)
信号量 (semaphore):是⼀种更⾼级的同步机制,互斥锁可以说是
semaphore在仅取值0/1时的特例。信号量可以有更多的取值空间,⽤来实
现更加复杂的同步,⽽不单单是线程间互斥。
• dispatch_semaphore
读写锁:读写锁实际是⼀种特殊的⾃旋锁,它把对共享资源的访问者划分成读者和写者,读者只对共享资源
进⾏读访问,写者则需要对共享资源进⾏写操作。这种锁相对于⾃旋锁⽽⾔,能提⾼并发性,因为
在多处理器系统中,它允许同时有多个读者来访问共享资源,最⼤可能的读者数为实际的逻辑CPU
数。写者是排他性的,⼀个读写锁同时只能有⼀个写者或多个读者(与CPU数相关),但不能同时
既有读者⼜有写者。在读写锁保持期间也是抢占失效的。
如果读写锁当前没有读者,也没有写者,那么写者可以⽴刻获得读写锁,否则它必须⾃旋在那⾥,
直到没有任何写者或读者。如果读写锁没有写者,那么读者可以⽴即获得该读写锁,否则读者必须
⾃旋在那⾥,直到写者释放该读写锁。
⼀次只有⼀个线程可以占有写模式的读写锁, 但是可以有多个线程同时占有读模式的读写锁. 正
是因为这个特性,
当读写锁是写加锁状态时, 在这个锁被解锁之前, 所有试图对这个锁加锁的线程都会被阻塞.
当读写锁在读加锁状态时, 所有试图以读模式对它进⾏加锁的线程都可以得到访问权, 但是如果
线程希望以写模式对此锁进⾏加锁, 它必须直到所有的线程释放锁.
通常, 当读写锁处于读模式锁住状态时, 如果有另外线程试图以写模式加锁, 读写锁通常会阻塞
随后的读模式锁请求, 这样可以避免读模式锁⻓期占⽤, ⽽等待的写模式锁请求⻓期阻塞.
读写锁适合于对数据结构的读次数⽐写次数多得多的情况. 因为, 读模式锁定时可以共享, 以写
模式锁住时意味着独占, 所以读写锁⼜叫共享-独占锁.
锁的归类
其实基本的锁就包括了三类 ⾃旋锁 互斥锁 读写锁,
其他的⽐如条件锁,递归锁,信号量都是上层的封装和实现!
TLS 线程相关解释
线程局部存储(Thread Local Storage,TLS): 是操作系统为线
程单独提供的私有空间,通常只有有限的容量。Linux系统下
通常通过pthread库中的
pthread_key_create()、
pthread_getspecific()、
pthread_setspecific()、
pthread_key_delete()
@synchronized
int main(int argc, char * argv[]) {
NSString * appDelegateClassName;
@autoreleasepool {
// Setup code that might create autoreleased objects goes here.
appDelegateClassName = NSStringFromClass([AppDelegate class]);
@synchronized (appDelegateClassName) {
NSLog(@"111111111111");
}
}
return UIApplicationMain(argc, argv, nil, appDelegateClassName);
}
在mian中添加@synchronized
,然后clang -x objective-c -rewrite-objc -isysroot /Applications/Xcode.app/Contents/Developer/Platforms/iPhoneSimulator.platform/Developer/SDKs/iPhoneSimulator.sdk main.m
一下
得到
int main(int argc, char * argv[]) {
NSString * appDelegateClassName;
/* @autoreleasepool */ { __AtAutoreleasePool __autoreleasepool;
appDelegateClassName = NSStringFromClass(((Class (*)(id, SEL))(void *)objc_msgSend)((id)objc_getClass("AppDelegate"), sel_registerName("class")));
{
id _rethrow = 0;
id _sync_obj = (id)appDelegateClassName;
objc_sync_enter(_sync_obj);
try {
struct _SYNC_EXIT { _SYNC_EXIT(id arg) : sync_exit(arg) {}
~_SYNC_EXIT() {objc_sync_exit(sync_exit);}
id sync_exit;
} _sync_exit(_sync_obj);
NSLog((NSString *)&__NSConstantStringImpl__var_folders__2_948tyv6520110qy_phw9x4fw0000gn_T_main_e85d49_mi_0);
} catch (id e) {_rethrow = e;}
{ struct _FIN { _FIN(id reth) : rethrow(reth) {}
~_FIN() { if (rethrow) objc_exception_throw(rethrow); }
id rethrow;
} _fin_force_rethow(_rethrow);}
}
}
return UIApplicationMain(argc, argv, __null, appDelegateClassName);
}
在这里就将obj进行保存,然后多了objc_sync_enter
和objc_sync_exit
,通过符号断点发现来源于libobjc.A.dylib
int objc_sync_enter(id obj)
{
int result = OBJC_SYNC_SUCCESS;
if (obj) {
SyncData* data = id2data(obj, ACQUIRE);
ASSERT(data);
data->mutex.lock();
} else {
// @synchronized(nil) does nothing
if (DebugNilSync) {
_objc_inform("NIL SYNC DEBUG: @synchronized(nil); set a breakpoint on objc_sync_nil to debug");
}
objc_sync_nil();//什么都不做
}
return result;
}
typedef struct alignas(CacheLineSize) SyncData {
struct SyncData* nextData;//链表结构
DisguisedPtr<objc_object> object;
int32_t threadCount; // number of THREADS using this block
recursive_mutex_t mutex;//递归互斥锁
} SyncData;
BREAKPOINT_FUNCTION(
void objc_sync_nil(void)
);
# define BREAKPOINT_FUNCTION(prototype) \
OBJC_EXTERN __attribute__((noinline, used, visibility("hidden"))) \
prototype { asm(""); }
首先判断obj,如果没有的话,什么都不做。如果有,就加lock
static SyncData* id2data(id object, enum usage why)
{
spinlock_t *lockp = &LOCK_FOR_OBJ(object);
SyncData **listp = &LIST_FOR_OBJ(object);
SyncData* result = NULL;
#if SUPPORT_DIRECT_THREAD_KEYS
//tls Thread Local Storage - KVC
// Check per-thread single-entry fast cache for matching object
bool fastCacheOccupied = NO;
SyncData *data = (SyncData *)tls_get_direct(SYNC_DATA_DIRECT_KEY);
if (data) {
fastCacheOccupied = YES;
if (data->object == object) {
// Found a match in fast cache.
uintptr_t lockCount;
result = data;
lockCount = (uintptr_t)tls_get_direct(SYNC_COUNT_DIRECT_KEY);
if (result->threadCount <= 0 || lockCount <= 0) {
_objc_fatal("id2data fastcache is buggy");
}
switch(why) {
case ACQUIRE: {
lockCount++;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
break;
}
case RELEASE:
lockCount--;
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)lockCount);
if (lockCount == 0) {
// remove from fast cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, NULL);
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
#endif
// Check per-thread cache of already-owned locks for matching object
SyncCache *cache = fetch_cache(NO);
if (cache) {
unsigned int i;
for (i = 0; i < cache->used; i++) {
SyncCacheItem *item = &cache->list[i];
if (item->data->object != object) continue;
// Found a match.
result = item->data;
if (result->threadCount <= 0 || item->lockCount <= 0) {
_objc_fatal("id2data cache is buggy");
}
switch(why) {
case ACQUIRE:
item->lockCount++;
break;
case RELEASE:
item->lockCount--;
if (item->lockCount == 0) {
// remove from per-thread cache
cache->list[i] = cache->list[--cache->used];
// atomic because may collide with concurrent ACQUIRE
OSAtomicDecrement32Barrier(&result->threadCount);
}
break;
case CHECK:
// do nothing
break;
}
return result;
}
}
// Thread cache didn't find anything.
// Walk in-use list looking for matching object
// Spinlock prevents multiple threads from creating multiple
// locks for the same new object.
// We could keep the nodes in some hash table if we find that there are
// more than 20 or so distinct locks active, but we don't do that now.
lockp->lock();
{
SyncData* p;
SyncData* firstUnused = NULL;
for (p = *listp; p != NULL; p = p->nextData) {
if ( p->object == object ) {
result = p;
// atomic because may collide with concurrent RELEASE
OSAtomicIncrement32Barrier(&result->threadCount);
goto done;
}
if ( (firstUnused == NULL) && (p->threadCount == 0) )
firstUnused = p;
}
// no SyncData currently associated with object
if ( (why == RELEASE) || (why == CHECK) )
goto done;
// an unused one was found, use it
if ( firstUnused != NULL ) {
result = firstUnused;
result->object = (objc_object *)object;
result->threadCount = 1;
goto done;
}
}
// Allocate a new SyncData and add to list.
// XXX allocating memory with a global lock held is bad practice,
// might be worth releasing the lock, allocating, and searching again.
// But since we never free these guys we won't be stuck in allocation very often.
posix_memalign((void **)&result, alignof(SyncData), sizeof(SyncData));
result->object = (objc_object *)object;
result->threadCount = 1;
new (&result->mutex) recursive_mutex_t(fork_unsafe_lock);
result->nextData = *listp;
*listp = result;
done:
lockp->unlock();
if (result) {
// Only new ACQUIRE should get here.
// All RELEASE and CHECK and recursive ACQUIRE are
// handled by the per-thread caches above.
if (why == RELEASE) {
// Probably some thread is incorrectly exiting
// while the object is held by another thread.
return nil;
}
if (why != ACQUIRE) _objc_fatal("id2data is buggy");
if (result->object != object) _objc_fatal("id2data is buggy");
#if SUPPORT_DIRECT_THREAD_KEYS
if (!fastCacheOccupied) {
// Save in fast thread cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, result);
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)1);
} else
#endif
{
// Save in thread cache
if (!cache) cache = fetch_cache(YES);
cache->list[cache->used].data = result;
cache->list[cache->used].lockCount = 1;
cache->used++;
}
}
return result;
}
如果第一次进来
SyncData* p;
SyncData* firstUnused = NULL;
for (p = *listp; p != NULL; p = p->nextData) {
if ( p->object == object ) {
result = p;
// atomic because may collide with concurrent RELEASE
OSAtomicIncrement32Barrier(&result->threadCount);
goto done;
}
if ( (firstUnused == NULL) && (p->threadCount == 0) )
firstUnused = p;
}
// no SyncData currently associated with object
//第一次通过ACQUIRE进来的
if ( (why == RELEASE) || (why == CHECK) )
goto done;
done:
// an unused one was found, use it
if ( firstUnused != NULL ) {
result = firstUnused;
result->object = (objc_object *)object;
result->threadCount = 1;
goto done;
}
if (!fastCacheOccupied) {
// Save in fast thread cache
tls_set_direct(SYNC_DATA_DIRECT_KEY, result);
tls_set_direct(SYNC_COUNT_DIRECT_KEY, (void*)1);
}
做一系列的初始化操作。
- 不是第一次,但是同一个线程:就是通过
tls
当前线程缓存的线程key通过KVC获取数据,然后lockCount ++ - 不是第一次,不同线程
static SyncCache *fetch_cache(bool create)
{
_objc_pthread_data *data;
data = _objc_fetch_pthread_data(create);
if (!data) return NULL;
if (!data->syncCache) {
if (!create) {
return NULL;
} else {
int count = 4;
data->syncCache = (SyncCache *)
calloc(1, sizeof(SyncCache) + count*sizeof(SyncCacheItem));
data->syncCache->allocated = count;
}
}
// Make sure there's at least one open slot in the list.
if (data->syncCache->allocated == data->syncCache->used) {
data->syncCache->allocated *= 2;
data->syncCache = (SyncCache *)
realloc(data->syncCache, sizeof(SyncCache)
+ data->syncCache->allocated * sizeof(SyncCacheItem));
}
return data->syncCache;
}
_objc_pthread_data *_objc_fetch_pthread_data(bool create)
{
_objc_pthread_data *data;
data = (_objc_pthread_data *)tls_get(_objc_pthread_key);
if (!data && create) {
data = (_objc_pthread_data *)
calloc(1, sizeof(_objc_pthread_data));
tls_set(_objc_pthread_key, data);
}
return data;
}
就从全局的线程控件中读取数据fetch
,操作完再赋值回去。
注:
1.@synchronized
性能很低:链表的缓存,下层代码不断的查找
2.给局部变量加锁的时候,变量在函数中值可能为nil到时程序崩溃,所以需要给一个持久的变量进行持有,比如self
,保证锁的声明周期
3.方便好用,不需要自己解锁
NSLock
nslock方法来源于协议
@protocol NSLocking
- (void)lock;
- (void)unlock;
@end
来源于Foundation
框架,目前Foundation
暂未开源,我们可以通过swift来查看,swift是开源的。
internal var mutex = _MutexPointer.allocate(capacity: 1)
#if os(macOS) || os(iOS) || os(Windows)
private var timeoutCond = _ConditionVariablePointer.allocate(capacity: 1)
private var timeoutMutex = _MutexPointer.allocate(capacity: 1)
#endif
public override init() {
#if os(Windows)
InitializeSRWLock(mutex)
InitializeConditionVariable(timeoutCond)
InitializeSRWLock(timeoutMutex)
#else
pthread_mutex_init(mutex, nil)
#if os(macOS) || os(iOS)
pthread_cond_init(timeoutCond, nil)
pthread_mutex_init(timeoutMutex, nil)
#endif
#endif
}
deinit {
#if os(Windows)
// SRWLocks do not need to be explicitly destroyed
#else
pthread_mutex_destroy(mutex)
#endif
mutex.deinitialize(count: 1)
mutex.deallocate()
#if os(macOS) || os(iOS) || os(Windows)
deallocateTimedLockData(cond: timeoutCond, mutex: timeoutMutex)
#endif
}
可以看到NSLock
初始化就是简单的初始化了pthread_mutex
,而NSLock
就是对pthread_mutex
的操作,所以NSLock
的性能只比pthread_mutex
差一点。
open func lock() {
#if os(Windows)
AcquireSRWLockExclusive(mutex)
#else
pthread_mutex_lock(mutex)
#endif
}
lock
只是加锁操作
open func unlock() {
#if os(Windows)
ReleaseSRWLockExclusive(mutex)
AcquireSRWLockExclusive(timeoutMutex)
WakeAllConditionVariable(timeoutCond)
ReleaseSRWLockExclusive(timeoutMutex)
#else
pthread_mutex_unlock(mutex)
#if os(macOS) || os(iOS)
// Wakeup any threads waiting in lock(before:)
pthread_mutex_lock(timeoutMutex)
pthread_cond_broadcast(timeoutCond)
pthread_mutex_unlock(timeoutMutex)
#endif
#endif
}
unlock
进行了解锁,并广播出去
for (int i= 0; i<100; i++) {
dispatch_async(dispatch_get_global_queue(0, 0), ^{
static void (^testMethod)(int);
[lock lock];
testMethod = ^(int value){
if (value > 0) {
NSLog(@"current value = %d",value);
testMethod(value - 1);
}
};
testMethod(10);
[lock unlock];
});
}
这是nslock的用法,但是在递归的时候就会发生严重的堵塞。
RecursiveLock
NSRecursiveLock *recursiveLock = [[NSRecursiveLock alloc] init];
for (int i= 0; i<100; i++) {
dispatch_async(dispatch_get_global_queue(0, 0), ^{
static void (^testMethod)(int);
[recursiveLock lock];
testMethod = ^(int value){
if (value > 0) {
NSLog(@"current value = %d",value);
testMethod(value - 1);
}
[recursiveLock unlock];
};
testMethod(10);
});
}
在处理递归的时候我们可以使用RecursiveLock
public override init() {
super.init()
#if os(Windows)
InitializeCriticalSection(mutex)
InitializeConditionVariable(timeoutCond)
InitializeSRWLock(timeoutMutex)
#else
#if CYGWIN
var attrib : pthread_mutexattr_t? = nil
#else
var attrib = pthread_mutexattr_t()
#endif
withUnsafeMutablePointer(to: &attrib) { attrs in
pthread_mutexattr_init(attrs)
pthread_mutexattr_settype(attrs, Int32(PTHREAD_MUTEX_RECURSIVE))
pthread_mutex_init(mutex, attrs)
}
#if os(macOS) || os(iOS)
pthread_cond_init(timeoutCond, nil)
pthread_mutex_init(timeoutMutex, nil)
#endif
#endif
}
NSRecursiveLock
与NSLock
的区别只是在init时pthread_mutexattr_settype(attrs, Int32(PTHREAD_MUTEX_RECURSIVE))
NSCondition
NSCondition 的对象实际上作为⼀个锁和⼀个线程检查器:锁主要
为了当检测条件时保护数据源,执⾏条件引发的任务;线程检查器
主要是根据条件决定是否继续运⾏线程,即线程是否被阻塞
1:[condition lock];//⼀般⽤于多线程同时访问、修改同⼀个数据源,保证在同⼀
时间内数据源只被访问、修改⼀次,其他线程的命令需要在lock 外等待,只到
unlock ,才可访问
2:[condition unlock];//与lock 同时使⽤
3:[condition wait];//让当前线程处于等待状态
4:[condition signal];//CPU发信号告诉线程不⽤在等待,可以继续执⾏
#pragma mark -- NSCondition
- (void)lg_testConditon{
_testCondition = [[NSCondition alloc] init];
//创建生产-消费者
for (int i = 0; i < 50; i++) {
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{
[self lg_producer];
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{
[self lg_consumer];
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{
[self lg_consumer];
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{
[self lg_producer];
});
}
}
- (void)lg_producer{
[_testCondition lock]; // 操作的多线程影响
self.ticketCount = self.ticketCount + 1;
NSLog(@"生产一个 现有 count %zd",self.ticketCount);
[_testCondition signal]; // 信号
[_testCondition unlock];
}
- (void)lg_consumer{
[_testCondition lock]; // 操作的多线程影响
if (self.ticketCount == 0) {
NSLog(@"等待 count %zd",self.ticketCount);
[_testCondition wait];
}
//注意消费行为,要在等待条件判断之后
self.ticketCount -= 1;
NSLog(@"消费一个 还剩 count %zd ",self.ticketCount);
[_testCondition unlock];
}
NSCondition
是对pthread_mutex
的封装,使用起来很麻烦,所以我们一半时有NSConditionLock
NSConditionLock
1.1 NSConditionLock 是锁,⼀旦⼀个线程获得锁,其他线程⼀定等待
1.2 [xxxx lock]; 表示 xxx 期待获得锁,如果没有其他线程获得锁(不需要判断内部的
condition) 那它能执⾏此⾏以下代码,如果已经有其他线程获得锁(可能是条件锁,或者⽆条件
锁),则等待,直⾄其他线程解锁
1.3 [xxx lockWhenCondition:A条件]; 表示如果没有其他线程获得该锁,但是该锁内部的
condition不等于A条件,它依然不能获得锁,仍然等待。如果内部的condition等于A条件,并且
没有其他线程获得该锁,则进⼊代码区,同时设置它获得该锁,其他任何线程都将等待它代码的
完成,直⾄它解锁。
1.4 [xxx unlockWithCondition:A条件]; 表示释放锁,同时把内部的condition设置为A条件
1.5 return = [xxx lockWhenCondition:A条件 beforeDate:A时间]; 表示如果被锁定(没获得
锁),并超过该时间则不再阻塞线程。但是注意:返回的值是NO,它没有改变锁的状态,这个函
数的⽬的在于可以实现两种状态下的处理
1.6 所谓的condition就是整数,内部通过整数⽐较条件
open class NSConditionLock : NSObject, NSLocking {
internal var _cond = NSCondition()
internal var _value: Int
internal var _thread: _swift_CFThreadRef?
public convenience override init() {
self.init(condition: 0)
}
public init(condition: Int) {
_value = condition
}
open func lock() {
let _ = lock(before: Date.distantFuture)
}
open func unlock() {
_cond.lock()
#if os(Windows)
_thread = INVALID_HANDLE_VALUE
#else
_thread = nil
#endif
_cond.broadcast()
_cond.unlock()
}
open var condition: Int {
return _value
}
open func lock(whenCondition condition: Int) {
let _ = lock(whenCondition: condition, before: Date.distantFuture)
}
open func `try`() -> Bool {
return lock(before: Date.distantPast)
}
open func tryLock(whenCondition condition: Int) -> Bool {
return lock(whenCondition: condition, before: Date.distantPast)
}
open func unlock(withCondition condition: Int) {
_cond.lock()
#if os(Windows)
_thread = INVALID_HANDLE_VALUE
#else
_thread = nil
#endif
_value = condition
_cond.broadcast()
_cond.unlock()
}
open func lock(before limit: Date) -> Bool {
_cond.lock()
while _thread != nil {
if !_cond.wait(until: limit) {
_cond.unlock()
return false
}
}
#if os(Windows)
_thread = GetCurrentThread()
#else
_thread = pthread_self()
#endif
_cond.unlock()
return true
}
open func lock(whenCondition condition: Int, before limit: Date) -> Bool {
_cond.lock()
while _thread != nil || _value != condition {
if !_cond.wait(until: limit) {
_cond.unlock()
return false
}
}
#if os(Windows)
_thread = GetCurrentThread()
#else
_thread = pthread_self()
#endif
_cond.unlock()
return true
}
open var name: String?
}
NSConditionLock总结
- 线程 1 调⽤[NSConditionLock lockWhenCondition:],此时此刻因为不满⾜当前条件,所
以会进⼊ waiting 状态,当前进⼊到 waiting 时,会释放当前的互斥锁。 - 此时当前的线程 3 调⽤[NSConditionLock lock:],本质上是调⽤ [NSConditionLock
lockBeforeDate:],这⾥不需要⽐对条件值,所以线程 3 会打印 - 接下来线程 2 执⾏[NSConditionLock lockWhenCondition:],因为满⾜条件值,所以线程2 会打印,打印完成后会调⽤[NSConditionLock unlockWithCondition:],这个时候讲
value 设置为 1,并发送 boradcast, 此时线程 1 接收到当前的信号,唤醒执⾏并打印。 - ⾃此当前打印为 线程 3->线程 2 -> 线程 1。 • [NSConditionLock lockWhenCondition:]:这⾥会根据传⼊的 condition 值和 Value 值进
⾏对⽐,如果不相等,这⾥就会阻塞,进⼊线程池,否则的话就继续代码执⾏ - [NSConditionLock unlockWithCondition:]: 这⾥会先更改当前的 value 值,然后进⾏⼴
播,唤醒当前的线程。
NSConditionLock *conditionLock = [[NSConditionLock alloc] initWithCondition:2];
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0), ^{
[conditionLock lockWhenCondition:1]; // conditoion = 1 内部 Condition 匹配
// -[NSConditionLock lockWhenCondition: beforeDate:]
NSLog(@"线程 1");
[conditionLock unlockWithCondition:0];
});
dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_LOW, 0), ^{
[conditionLock lockWhenCondition:2];
// sleep(0.1);
NSLog(@"线程 2");
// self.myLock.value = 1;
[conditionLock unlockWithCondition:1]; // _value = 2 -> 1
});
网友评论