知己知彼,百战不殆。我们要打造一个能胜过人类的机器人,就必须要让机器人掌握人类的围棋思维模式,因此我们就需要使用人类棋手留下的棋盘数据训练机器人,让它从数据中掌握人类围棋思维存在的模式和套路。
幸运的是,我们能够通过围棋服务器拿到很多由人落子后产生的棋盘数据。很多围棋服务器公开了这些数据,这些围棋数据以一种叫Smart Game Format的方式存储,我们可以将其下载下来进行预处理后用于训练我们的神经网络,如此得到的网络,它的落子能力将远远超过上一节我们训练的网络机器人。
我们从当下最流行的围棋服务器下载棋盘数据,这个服务器叫KGS(Kiseido Go Server).在下载数据前,我们先了解具体的数据格式。它是一种文本格式数据,它通常用两个大写字母来表示棋盘属性,例如表示棋盘规格时使用的字母是SZ,然后在后面用大括号来容纳属性对应的数值,对于一个9*9的棋盘而言,对应的描述属性为SZ[9]。
它用W来表示白子,如果白子落在第三行第三列,对应的记录就是W[cc],也就是它使用字符次序来表示数字,因此c就表示数字3,同时B表示黑子,如果描述黑子落在第7行,第3列,对应的属性描述就是B[gc],字母g表示7。如果在某一步白棋或黑子pass,对应的描述就是B[],W[],也就是中括号内没有内容。
由此我们看下面一段数据对棋盘的描述:
(;FF[4] GM[1] SZ[9] HA[0] KM[6.5] RU[Japanese] RE[W+9.5] ;B[gc];W[cc];B[cg];W[gg];B[hf];W[gf];B[hg];W[hh];B[ge];W[df];B[dg] ;W[eh];B[cf];W[be];B[eg];W[fh];B[de];W[ec];B[fb];W[eb];B[ea];W[da] ;B[fa];W[cb];B[bf];W[fc];B[gb];W[fe];B[gd];W[ig];B[bd];W[he];B[ff] ;W[fg];B[ef];W[hd];B[fd];W[bi];B[bh];W[bc];B[cd];W[dc];B[ac];W[ab] ;B[ad];W[hc];B[ci];W[ed];B[ee];W[dh];B[ch];W[di];B[hb];W[ib];B[ha] ;W[ic];B[dd];W[ia];B[];
TW[aa][ba][bb][ca][db][ei][fi][gh][gi][hf][hg][hi][id][ie][if] [ih][ii]
TB[ae][af][ag][ah][ai][be][bg][bi][ce][df][fe][ga] W[])
其中FF[4]表示数据格式的版本号,有点类似于操作系统版本。GM[1]表示比赛第一盘,HA表示让子,HA[0]表示没有让子。RU[Japanese]表示围棋遵循日本规则,RE[W+9.5]表示白子以9.5分优势获胜,KM[6.5]表示第二落子的人获得6.5分补偿。接下来 以分好分割的就是双方落子方式。最后TW表示的是白子地盘,TB表示黑子占据的地盘。
理解了数据格式后,我们可以通过网址 https://www.u-go.net/gamerecords/
下载棋盘数据:
这上面都存储了六段以上高手对弈的棋盘数据。我们接下来将会创建一个爬虫机器人,爬去网页,分析里面链接后自动将数据下载到本地并解压,在后面我们会具体给出爬虫的实现代码,当爬虫运行后,它会解析页面,找出下载链接,依次把文件下载到指定文件夹中,其运行信息如下:
>>>Downloading content/gdrive/My Drive/GO_RECORD/KGS-2006-19-10388-.tar.gz
worker is running
>>>Downloading content/gdrive/My Drive/GO_RECORD/KGS-2005-19-13941-.tar.gz
worker is running
>>>Downloading content/gdrive/My Drive/GO_RECORD/KGS-2004-19-12106-.tar.gz
worker is running
>>>Downloading content/gdrive/My Drive/GO_RECORD/KGS-2003-19-7582-.tar.gz
worker is running
>>>Downloading content/gdrive/My Drive/GO_RECORD/KGS-2002-19-3646-.tar.gz
worker is running
>>>Downloading content/gdrive/My Drive/GO_RECORD/KGS-2001-19-2298-.tar.gz
下载完数据后,我们会用代码解读棋盘数据,并将数据所表示的棋盘落子过程重放一遍,棋盘数据的解读烦琐耗时,为了将精力集中到网络训练上,我们将直接使用一个已经完成的数据解读类来帮我们解读棋盘数据。
首先我们先构造一段虚拟棋盘数据:
"(;GM[1] FF[4] SZ[9];B[ee];W[ef];B[ff])" + \
";W[df];B[fe];W[fc];B[ef];W[gd];B[fb]"
然后使用棋盘数据读取工具类Sgf_game读取上面信息,将其转换成白棋和黑棋的落子信息,然后启动一个虚拟棋盘,将上面的落子步骤显示出来,当我们正确读取上面棋盘信息后,我们可以输出以下模拟棋盘:
19 . . . . . . . . . . . . . . . . . . .
18 . . . . . . . . . . . . . . . . . . .
17 . . . . . . . . . . . . . . . . . . .
16 . . . . . . . . . . . . . . . . . . .
15 . . . . . . . . . . . . . . . . . . .
14 . . . . . . . . . . . . . . . . . . .
13 . . . . . . . . . . . . . . . . . . .
12 . . . . . . . . . . . . . . . . . . .
11 . . . . . . . . . . . . . . . . . . .
10 . . . . . . . . . . . . . . . . . . .
9 . . . . . . . . . . . . . . . . . . .
8 . . . . . . . . . . . . . . . . . . .
7 . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . .
5 . . . . x . . . . . . . . . . . . . .
4 . . . . . . . . . . . . . . . . . . .
3 . . . . . . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . . . . . . .
1 . . . . . . . . . . . . . . . . . . .
A B C D E F G H J K L M N O P Q R S T
19 . . . . . . . . . . . . . . . . . . .
18 . . . . . . . . . . . . . . . . . . .
17 . . . . . . . . . . . . . . . . . . .
16 . . . . . . . . . . . . . . . . . . .
15 . . . . . . . . . . . . . . . . . . .
14 . . . . . . . . . . . . . . . . . . .
13 . . . . . . . . . . . . . . . . . . .
12 . . . . . . . . . . . . . . . . . . .
11 . . . . . . . . . . . . . . . . . . .
10 . . . . . . . . . . . . . . . . . . .
9 . . . . . . . . . . . . . . . . . . .
8 . . . . . . . . . . . . . . . . . . .
7 . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . .
5 . . . . x . . . . . . . . . . . . . .
4 . . . . o . . . . . . . . . . . . . .
3 . . . . . . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . . . . . . .
1 . . . . . . . . . . . . . . . . . . .
A B C D E F G H J K L M N O P Q R S T
19 . . . . . . . . . . . . . . . . . . .
18 . . . . . . . . . . . . . . . . . . .
17 . . . . . . . . . . . . . . . . . . .
16 . . . . . . . . . . . . . . . . . . .
15 . . . . . . . . . . . . . . . . . . .
14 . . . . . . . . . . . . . . . . . . .
13 . . . . . . . . . . . . . . . . . . .
12 . . . . . . . . . . . . . . . . . . .
11 . . . . . . . . . . . . . . . . . . .
10 . . . . . . . . . . . . . . . . . . .
9 . . . . . . . . . . . . . . . . . . .
8 . . . . . . . . . . . . . . . . . . .
7 . . . . . . . . . . . . . . . . . . .
6 . . . . . . . . . . . . . . . . . . .
5 . . . . x . . . . . . . . . . . . . .
4 . . . . ox . . . . . . . . . . . . .
3 . . . . . . . . . . . . . . . . . . .
2 . . . . . . . . . . . . . . . . . . .
1 . . . . . . . . . . . . . . . . . . .
A B C D E F G H J K L M N O P Q R S T
完成了数据的解析后,我们就得创建数据处理器,将下载的棋盘数据转换成网络可以识别的向量格式,然后喂给网络,滋养网络的发育。它首先从下载的棋盘描述文件中选取出一部分进行解压,然后读取解压后的数据文件,将它描述的棋盘转换为上一节对应的棋盘编码,同时将当前棋盘与下一步落子对应起来。
我们要把数据分割成两部分,其中时间在2014年前的数据作为测试数据,之后的数据作为训练数据。我们把数据读入内存,按照上面描描述解析数据后,将解析后的数据存储起来以便以后使用,因为数据解析是非常耗时耗力的”脏活累活“,我们尽量做一次即可。
首先我们完成下载数据的代码:
import os
import sys
import multiprocessing
import six
from urllib.request import urlopen, urlretrieve
#创建下载线程函数
def worker(url_and_target):
try:
(url, target_path) = url_and_target
print('>>>Downloading ' + target_path)
urlretrieve(url, target_path)
except (KeyboardInterrupt, SystemExit):
print('Exiting download worker')
class KGSDownloader:
def __init__(self, kgs_url = 'https://www.u-go.net/gamerecords/',
download_page = 'kgs_index.html',
data_directory = '/content/gdrive/My Drive/GO_RECORD/'):
self.kgs_url = kgs_url
self.download_page = download_page
self.data_directory = data_directory
#下载文件信息
self.file_info = []
#下载数据对应的url
self.urls = []
#启动下载页面解析流程
self.loading()
def download_files(self):
print('begin download')
'''
根据CPU核数创建下载线程同时下载棋盘数据
'''
if not os.path.isdir(self.data_directory):
os.makedirs(self.data_directory)
urls_to_download = []
print('file_info: ', self.file_info)
for file_info in self.file_info:
url = file_info['url']
file_name = file_info['filename']
#如果文件没有下载过就进行下载
print('filename is : ', file_name)
if not os.path.isfile(self.data_directory + '/' + file_name):
urls_to_download.append((url, self.data_directory + '/' + file_name))
cores = multiprocessing.cpu_count()
#根据CPU核数创建线程池
pool = multiprocessing.Pool(processes = cores)
print('cores: ', cores)
try:
#将要下载的文件URL分发给每个下载线程
print('pool imap: ', urls_to_download)
it = pool.imap(worker, urls_to_download)
print('it: ', it)
for _ in it:
pass
#关闭线程池防止资源泄露
pool.close()
pool.join()
print('pool imap end')
except KeyboardInterrupt:
print('>>>Caught KeyboardInterrupt, terminating works')
pool.terminate()
pool.join()
sys.exit(-1)
def create_download_page(self):
print('create_download_page: ', )
if os.path.isfile(self.download_page):
print('>>> Reading download page: ', self.download_page)
download_file = open(self.download_page, 'r')
download_contents = download_file.read()
print('contents: ', download_contents)
download_file.close()
else:
print('>>> Downloading download page')
fp = urlopen(self.kgs_url)
data = six.text_type(fp.read())
fp.close()
download_contents = data
download_file = open(self.download_page, 'w')
download_file.write(download_contents)
download_file.close()
return download_contents
def loading(self):
'''
从html页面中将下载数据的文件名以及对应的url抽取出来
'''
download_contents = self.create_download_page()
print('download contents: ', download_contents)
split_page = [item for item in download_contents.split('<a href="') if item.startswith("https://")]
for item in split_page:
#在html页面源码中,数据下载链接在"Download"字符串前面
download_url = item.split('">Download')[0]
if download_url.endswith('.tar.gz'):
self.urls.append(download_url)
'''
下载文件名格式如下:
KGS-2019_01-19-2095-.tar.gz
2019是年份,2095是盘数
2015年之前的文件名在年份之后跟着的是'-'而不是'_'这点要注意
'''
for url in self.urls:
filename = os.path.basename(url)
split_file_name = filename.split('-')
num_games = int(split_file_name[len(split_file_name) - 2])
print(filename + ' ' + str(num_games))
self.file_info.append({'url': url, 'filename':filename,
'num_games' : num_games})
downloader = KGSDownloader()
downloader.download_files()
在上面代码中,我们启动一个线程池,你的电脑有几核,它就能生成几个线程同时下载数据。首先代码先从解析下载页面的html代码,从中解析出下载链接,最后再将下载链接依次分发给下载线程进行下载。
当把数据下载完毕后,我们需要从下载的数据中选取需要的数据。下载数据总共有17000盘棋局作用,我们使用下面代码从下载数据中选取需要的数据量:
import random
import os
'''
把数据分成两部分,一部分是测试数据,一部分是训练数据,为了保持数据集稳定,我们只采用不晚于2014年12月的数据。
下面代码先将下载数据中选定一定的棋盘数作为测试数据集,剩下的全部作为训练数据集
'''
class Sampler:
def __init__(self, data_dir = '/content/gdrive/My Drive/GO_RECORD/',
num_test_games = 100,
cap_year = 2015, seed = 1337):
self.data_dir = data_dir
self.num_test_games = num_test_games
self.test_games = []
self.train_games = []
self.test_folder = 'test_samples.py'
self.cap_year = cap_year
random.seed(seed)
self.compute_test_samples()
def draw_data(self, data_type, num_samples):
'''
data_type 表明要抽取的数据是训练数据还是测试数据
'''
if data_type == 'test':
return self.test_games
elif data_type == 'train' and num_samples is not None:
return self.draw_training_sampels(num_samples)
elif data_type == 'train' and num_samples is None:
return self.draw_all_training()
raise ValueError(data_type + ' is not a valid data type')
def draw_samples(self, num_sample_games):
available_games = []
loader = KGSDownloader(data_directory = self.data_dir)
for fileinfo in loader.file_info:
filename = fileinfo['filename']
year = int(filename.split('-')[1].split('_')[0])
if year > self.cap_year:
continue
num_games = fileinfo['num_games']
for i in range(num_games):
available_games.append((filename, i))
print('>>>Total number of games used: ' + str(len(available_games)))
sample_set = set()
while len(sample_set) < num_sample_games:
sample = random.choice(available_games)
if sample not in sample_set:
sample_set.add(sample)
print('Drawn ' + str(num_sample_games) + ' samples:' )
return list(sample_set)
def draw_training_games(self):
'''
从下载数据中抽取训练数据,这些数据对应于2014年之后的棋盘记录
同时cap_year以后的数据暂时不考虑以便维持训练数据的稳定性
'''
loader = KGSDownloader(data_directory = self.data_dir)
for file_info in loader.file_info:
filename = file_info['filename']
year = int(filename.split('-')[1].split('_')[0])
if year > self.cap_year:
continue
num_games = file_info['num_games']
for i in range(num_games):
sample = (filename, i)
if sample not in self.test_games:
self.train_games.append(sample)
print('total num training games: ' + str(len(self.train_games)))
def compute_test_samples(self):
'''
将2014年之前的棋盘数据作为测试数据放置到test_folder文件夹中
'''
if not os.path.isfile(self.test_folder):
test_games = self.draw_samples(self.num_test_games)
test_sample_file = open(self.test_folder, 'w')
for sample in test_games:
test_sample_file.write(str(sample) + '\n')
test_sample_file.close()
test_sample_file = open(self.test_folder, 'r')
sample_contents = test_sample_file.read()
test_sample_file.close()
for line in sample_contents.split('\n'):
if line != "":
(filename, index) = eval(line)
self.test_games.append((filename, index))
def draw_training_sampels(self, num_sample_games):
available_games = []
loader = KGSDownloader(data_directory = self.data_dir)
for fileinfo in loader.file_info:
filename = fileinfo['filename']
year = int(filename.split('-')[1].split('_')[0])
if year > self.cap_year:
continue
num_games = fileinfo['num_games']
for i in range(num_games):
available_games.append((filename, i))
print('total num games: ' + str(len(available_games)))
sample_set = set()
while len(sample_set) < num_sample_games:
#从所有数据中随机选取一个
sample = random.choice(available_games)
#由于测试数据集都是在2014年之前,因此不属于测试数据集的数据都可以作为训练数据
if sample not in self.test_games:
sample_set.add(sample)
print('Drawn ' + str(num_sample_games) + ' samples:')
return list(sample_set)
def draw_all_training(self):
available_games = []
loader = KGSDownloader(data_directory = self.data_dir)
for fileinfo in loader.file_info:
filename = fileinfo['filename']
year = int(filename.split('-')[1].split('_')[0])
if year > self.cap_year:
continue
if 'num_games' in fileinfo.keys():
num_games = fileinfo['num_games']
else:
continue
for i in range(num_games):
available_games.append((filename, i))
print('total num games: ' + str(len(available_games)))
sample_set = set()
for sample in available_games:
if sample not in self.test_games:
sample_set.add(sample)
print('Drawn all samples, ie ' + str(len(sample_set)) + ' samples:')
return list(sample_set)
上面代码将数据分成两部分,一部分作为测试数据,一部分作为训练数据。同时提供了灵活性,例如支持我们从17000盘数据中抽样出100盘数据等等。最后我们把数据读入内存,然后转换成前面我们讲过的棋盘编码:
import tarfile
import gzip
import glob
import shutil
import os.path
class GoDataProcessor:
def __init__(self, encoder = 'oneplane', data_directory = '/content/gdrive/My Drive/GO_RECORD'):
if encoder == 'oneplane':
self.encoder = OnePlaneEncoder(19)
self.data_dir = data_directory
def load_go_data(self, data_type = 'train', num_samples = 1000):
#从下载数据中抽取出给定数量的训练数据
sampler = Sampler(data_dir = self.data_dir)
data = sampler.draw_data(data_type, num_samples)
#将选中的文件数据进行解压,index 表示第几盘
zip_names = set()
indices_by_zip_name = {}
for filename, index in data:
zip_names.add(filename)
if filename not in indices_by_zip_name:
indices_by_zip_name[filename] = []
indices_by_zip_name[filename].append(index)
for zip_name in zip_names:
#创建解压后的文件名
base_name = zip_name.replace('.tar.gz', '')
data_file_name = base_name + data_type
print('process zip file with name: ', self.data_dir + '/' + data_file_name)
print('is file check: ', os.path.isfile(self.data_dir + '/' + data_file_name))
#if not os.path.isfile(self.data_dir + '/' + data_file_name):
self.process_zip(zip_name, data_file_name, indices_by_zip_name[zip_name])
#将数据描述的棋盘转为为上一节描述的编码和对应的落子
features_and_labels = self.consolidate_games(data_type, data)
return features_and_labels
def process_zip(self, zip_file_name, data_file_name, game_list):
#先把数据文件解压出来
tar_file = self.unzip_data(zip_file_name)
zip_file = tarfile.open(self.data_dir + '/' + tar_file)
#获得.tar.gz解压后文件夹中所有文件的名字集合
name_list = zip_file.getnames()
#这里得到当前棋盘总共下了多少步棋,game_list对应的是第几盘比赛
total_examples = self.num_total_examples(zip_file, game_list, name_list)
#shape = [19. 19]
shape = self.encoder.shape()
#feature_shape 是数组,每个元素是[19,19]二维向量
feature_shape = np.insert(shape, 0, np.asarray([total_examples]))
features = np.zeros(feature_shape)
#lables是一维数组,每个元素对应落子位置
labels = np.zeros((total_examples, ))
print('process_zip with features len: ', len(features))
features_len = len(features)
counter = 0
for index in game_list:
name = name_list[index + 1]
if not name.endswith('.sgf'):
raise ValueError(name + ' is not a valid sgf')
sgf_content = zip_file.extractfile(name).read()
sgf = Sgf_game.from_string(sgf_content)
'''
水平高的一方可能会让子,于是另一方可直接连续落子,我们先处理这种情况
'''
game_state, first_move_done = self.get_handicap(sgf)
for item in sgf.main_sequence_iter():
#依次将落子步骤读取出来
color, move_tuple = item.get_move()
point = None
if color is not None:
if move_tuple is not None:
row, col = move_tuple
point = Point(row + 1, col + 1)
move = Move.play(point)
else:
move = Move.pass_turn()
if first_move_done and point is not None:
#如果有让子,那么把对方落子后的棋盘当做训练数据,然后另一方落子方式当做训练标签
features[counter] = self.encoder.encode(game_state)
labels[counter] = self.encoder.encode_point(point)
counter += 1
#先按照落子步骤形成棋盘,下一次读取落子时它就会变成训练数据
game_state = game_state.apply_move(move)
first_move_done = True
feature_file_base = self.data_dir + '/' + data_file_name + '_features_%d'
label_file_base = self.data_dir + '/' + data_file_name + '_label_%d'
#我们将加工好的数据存储成文件
chunk = 0
chunksize = 1024
#每1024条记录当做一个chunk,每一个chunk单独存储
while features.shape[0] >= chunksize:
feature_file = feature_file_base % chunk
label_file = label_file_base % chunk
chunk += 1
current_features, features = features[:chunksize], features[chunksize:]
current_labels, labels = labels[:chunksize], labels[chunksize:]
np.save(feature_file, current_features)
np.save(label_file, current_labels)
def unzip_data(self, zip_file_name):
#.tar.gz文件经过了两层压缩,首先解压gz压缩
this_gz = gzip.open(self.data_dir + '/' + zip_file_name)
#去掉尾部的.gz后缀
tar_file = zip_file_name[0:-3]
#创建.tar文件,将解压后gz压缩后的内容拷贝到该文件
this_tar = open(self.data_dir + '/' + tar_file, 'wb')
shutil.copyfileobj(this_gz, this_tar)
return tar_file
def num_total_examples(self, zip_file, game_list, name_list):
'''
#根据棋盘描述文件中的落子次数推算出训练数据的长度,每一次落子前的棋盘会成为训练数据,
落子则对应训练标签,一旦落子后形成的棋盘就会成为新的训练数据
'''
total_examples = 0
for index in game_list:
name = name_list[index + 1]
if name.endswith('.sgf'):
#zip_file对应解压后的tar文件,其中包含很多.sgf文件,这里把指定的sgf文件内容读取出来
sfg_content = zip_file.extractfile(name).read()
sgf = Sgf_game.from_string(sfg_content)
game_state, first_move_done = self.get_handicap(sgf)
num_moves = 0
for item in sgf.main_sequence_iter():
color, move = item.get_move()
if color is not None:
if first_move_done:
num_moves += 1
first_move_done = True
total_examples = total_examples + num_moves
else:
raise ValueError(name + ' is not a valid sgf')
return total_examples
@staticmethod
def get_handicap(sgf):
#将让子时对应的落子摆到棋盘上
go_board = Board(19, 19)
first_move_done = False
move = None
game_state = GameState.new_game(19)
if sgf.get_handicap() is not None and sgf.get_handicap() != 0:
for setup in sgf.get_root().get_setup_stones():
for move in setup:
row, col = move
go_board.place_stone(Player.black, Point(row + 1, col + 1))
first_move_done = True
game_state = GameState(go_board, Player.white, None, move)
return game_state, first_move_done
#前面我们把数据存储成多个小段,这里我们把多个小段读入内存合作一个整体
def consolidate_games(self, data_type, samples):
files_needed = set(file_name for file_name , index in samples)
file_names = []
for zip_file_name in files_needed:
file_name = zip_file_name.replace('.tar.gz', '') + data_type
file_names.append(file_name)
feature_list = []
label_list = []
for file_name in file_names:
file_prefix = file_name.replace('.tar.gz', '')
base = self.data_dir + '/' + file_prefix + '_features_*.npy'
print('consolidate with file: ', base)
for feature_file in glob.glob(base):
label_file = feature_file.replace('features', 'labels')
x = np.load(feature_file)
y = np.load(label_file)
x = x.astype('float32')
y = to_categorical(y.astype(int), 19 * 19)
feature_list.append(x)
label_list.append(y)
features = np.concatenate(feature_list, axis = 0)
labels = np.concatenate(label_list, axis = 0)
np.save('{}/features_{}.npy'.format(self.data_dir, data_type), features)
np.save('{}/labels_{}.npy'.format(self.data_dir, data_type), labels)
return features, labels
上面的代码将下载后的棋盘数据解压,然后读取sfg格式文件,并将它们编码转换成前面我们说过的棋盘编码,由此我们就可以获得用于训练网络的数据。但运行上面的代码将非常缓慢耗时,因此我们要使用多进程机制加载数据以便提升速度和效率,首先我们将创建一个DataGenerator,它将像水泵一样将数据抽取出来传递给网络:
class DataGenerator:
'''
创建一个数据抽取水泵,按照网络需要每次从数据池中抽取一小部分数据用于网络训练
'''
def __init__(self, data_directory, samples):
self.data_directory = data_directory
#samples表示要抽取的数据量
self.samples = samples
self.files = set(file_name for file_name, index in samples)
def get_num_samples(self, batch_size = 128, num_classes = 19 * 19):
'''
为了加快数据读取速度,我们’按需‘抽取数据而不是一下子读取大量数据
'''
if self.num_samples is not None:
return self.num_samples
else:
self.num_samples = 0
for X, y in self._generate(batch_size = batch_size, num_classes = num_classes):
self.num_samples += X.shape[0]
return self.num_samples
def _generate(self, batch_size, num_classes):
for zip_file_name in self.files:
file_name = zip_file_name.replace('.tar.gz', '') + 'train'
base = self.data_director + '/' + file_name + '_features_*.npy'
for feature_file in glob.glob(base):
label_file = feature_file.replace('features', 'labels')
x = np.load(feature_file)
y = np.load(label_file)
x = x.astype('float32')
y = to_categorical(y.astype(int), num_classes)
while x.shape[0] >= batch_size:
x_batch, x = x[:batch_size], x[batch_size:]
y_batch, y = y[:batch_size], y[batch_size:]
yield x_batch, y_batch
def generate(self, batch_size = 128, num_classes = 19 * 19):
while True:
for item in self._generate(batch_size, num_classes):
yield item
接下来我们改进GoDataProcessor,使用多线程去实现文件的解压,读取并编码成训练数据:
#将前面的GoDataProcessor改进为多线程版本
import tarfile
import gzip
import glob
import shutil
import os.path
import numpy as np
def worker(jobinfo):
#工作线程
try:
'''
实例化GoDataProcessor,调用它的process_zip解压给定压缩文件,同时解析sgf文件,将它们转换
为棋盘编码,这个过程可以使用多线程加速
'''
clazz, encoder, zip_file, data_file_name, game_list = jobinfo
clazz(encoder=encoder).process_zip(zip_file, data_file_name, game_list)
except (KeyboardInterrupt, SystemExit):
raise Exception('>>> Exiting child process.')
class GoDataProcessor:
def __init__(self, encoder = 'oneplane', data_directory = '/content/gdrive/My Drive/GO_RECORD'):
if encoder == 'oneplane':
self.encoder = OnePlaneEncoder(19)
self.encoder_string = encoder
self.data_dir = data_directory
def load_go_data(self, data_type = 'train', num_samples = 1000,
use_generator = False):
#从下载数据中抽取出给定数量的训练数据
sampler = Sampler(data_dir = self.data_dir)
data = sampler.draw_data(data_type, num_samples)
#启动线程池
self.map_to_workers(data_type, data)
if use_generator:
#将解析后的数据分批次喂给网络
generator = DataGenerator(self.data_dir, data)
return generator
else:
#按照老方式一下子将所有数据推给网络
features_and_labels = self.consolidate_games(data_type, data)
return features_and_labels
def process_zip(self, zip_file_name, data_file_name, game_list):
#先把数据文件解压出来
tar_file = self.unzip_data(zip_file_name)
zip_file = tarfile.open(self.data_dir + '/' + tar_file)
#获得.tar.gz解压后文件夹中所有文件的名字集合
name_list = zip_file.getnames()
#这里得到当前棋盘总共下了多少步棋,game_list对应的是第几盘比赛
total_examples = self.num_total_examples(zip_file, game_list, name_list)
#shape = [19. 19]
shape = self.encoder.shape()
#feature_shape 是数组,每个元素是[19,19]二维向量
feature_shape = np.insert(shape, 0, np.asarray([total_examples]))
features = np.zeros(feature_shape)
#lables是一维数组,每个元素对应落子位置
labels = np.zeros((total_examples, ))
print('process_zip with features len: ', len(features))
features_len = len(features)
counter = 0
for index in game_list:
name = name_list[index + 1]
if not name.endswith('.sgf'):
raise ValueError(name + ' is not a valid sgf')
sgf_content = zip_file.extractfile(name).read()
sgf = Sgf_game.from_string(sgf_content)
'''
水平高的一方可能会让子,于是另一方可直接连续落子,我们先处理这种情况
'''
game_state, first_move_done = self.get_handicap(sgf)
for item in sgf.main_sequence_iter():
#依次将落子步骤读取出来
color, move_tuple = item.get_move()
point = None
if color is not None:
if move_tuple is not None:
row, col = move_tuple
point = Point(row + 1, col + 1)
move = Move.play(point)
else:
move = Move.pass_turn()
if first_move_done and point is not None:
#如果有让子,那么把对方落子后的棋盘当做训练数据,然后另一方落子方式当做训练标签
features[counter] = self.encoder.encode(game_state)
labels[counter] = self.encoder.encode_point(point)
counter += 1
#先按照落子步骤形成棋盘,下一次读取落子时它就会变成训练数据
game_state = game_state.apply_move(move)
first_move_done = True
feature_file_base = self.data_dir + '/' + data_file_name + '_features_%d'
label_file_base = self.data_dir + '/' + data_file_name + '_label_%d'
#我们将加工好的数据存储成文件
chunk = 0
chunksize = 1024
#每1024条记录当做一个chunk,每一个chunk单独存储
while features.shape[0] >= chunksize:
feature_file = feature_file_base % chunk
label_file = label_file_base % chunk
chunk += 1
current_features, features = features[:chunksize], features[chunksize:]
current_labels, labels = labels[:chunksize], labels[chunksize:]
np.save(feature_file, current_features)
np.save(label_file, current_labels)
def unzip_data(self, zip_file_name):
#.tar.gz文件经过了两层压缩,首先解压gz压缩
this_gz = gzip.open(self.data_dir + '/' + zip_file_name)
#去掉尾部的.gz后缀
tar_file = zip_file_name[0:-3]
#创建.tar文件,将解压后gz压缩后的内容拷贝到该文件
this_tar = open(self.data_dir + '/' + tar_file, 'wb')
shutil.copyfileobj(this_gz, this_tar)
return tar_file
def num_total_examples(self, zip_file, game_list, name_list):
'''
#根据棋盘描述文件中的落子次数推算出训练数据的长度,每一次落子前的棋盘会成为训练数据,
落子则对应训练标签,一旦落子后形成的棋盘就会成为新的训练数据
'''
total_examples = 0
for index in game_list:
name = name_list[index + 1]
if name.endswith('.sgf'):
#zip_file对应解压后的tar文件,其中包含很多.sgf文件,这里把指定的sgf文件内容读取出来
sfg_content = zip_file.extractfile(name).read()
sgf = Sgf_game.from_string(sfg_content)
game_state, first_move_done = self.get_handicap(sgf)
num_moves = 0
for item in sgf.main_sequence_iter():
color, move = item.get_move()
if color is not None:
if first_move_done:
num_moves += 1
first_move_done = True
total_examples = total_examples + num_moves
else:
raise ValueError(name + ' is not a valid sgf')
return total_examples
@staticmethod
def get_handicap(sgf):
#将让子时对应的落子摆到棋盘上
go_board = Board(19, 19)
first_move_done = False
move = None
game_state = GameState.new_game(19)
if sgf.get_handicap() is not None and sgf.get_handicap() != 0:
for setup in sgf.get_root().get_setup_stones():
for move in setup:
row, col = move
go_board.place_stone(Player.black, Point(row + 1, col + 1))
first_move_done = True
game_state = GameState(go_board, Player.white, None, move)
return game_state, first_move_done
#前面我们把数据存储成多个小段,这里我们把多个小段读入内存合作一个整体
def consolidate_games(self, data_type, samples):
files_needed = set(file_name for file_name , index in samples)
file_names = []
for zip_file_name in files_needed:
file_name = zip_file_name.replace('.tar.gz', '') + data_type
file_names.append(file_name)
feature_list = []
label_list = []
for file_name in file_names:
file_prefix = file_name.replace('.tar.gz', '')
base = self.data_dir + '/' + file_prefix + '_features_*.npy'
print('consolidate with file: ', base)
for feature_file in glob.glob(base):
label_file = feature_file.replace('features', 'labels')
x = np.load(feature_file)
y = np.load(label_file)
x = x.astype('float32')
y = to_categorical(y.astype(int), 19 * 19)
feature_list.append(x)
label_list.append(y)
features = np.concatenate(feature_list, axis = 0)
labels = np.concatenate(label_list, axis = 0)
np.save('{}/features_{}.npy'.format(self.data_dir, data_type), features)
np.save('{}/labels_{}.npy'.format(self.data_dir, data_type), labels)
return features, labels
def map_to_workers(self, data_type, samples):
#将选中的文件数据进行解压,index 表示第几盘
zip_names = set()
indices_by_zip_name = {}
for filename, index in samples:
zip_names.add(filename)
if filename not in indices_by_zip_name:
indices_by_zip_name[filename] = []
indices_by_zip_name[filename].append(index)
zips_to_process = []
for zip_name in zip_names:
#创建解压后的文件名
base_name = zip_name.replace('.tar.gz', '')
data_file_name = base_name + data_type
zips_to_process.append((self.__class__, self.encoder_string, zip_name,
data_file_name, indices_by_zip_name[zip_name]))
cores = multiprocessing.cpu_count()
pool = multiprocessing.Pool(processes = cores)
p = pool.map_async(worker, zips_to_process)
try:
_ = p.get()
except KeyboardInterrupt:
pool.terminate()
pool.join()
sys.exit(-1)
上面代码跟以前代码差别不大,唯一差别在于使用多线程执行process_zip,也就是将文件的解压,读取,以及编码成训练数据的过程线程化,从而依赖多线程成倍提升效率。
本节代码比较繁琐,请参考视频加深理解。
更多技术信息,包括操作系统,编译器,面试算法,机器学习,人工智能,请关照我的公众号:
这里写图片描述
网友评论