package basic;
import org.junit.Before;
import org.junit.Test;
import java.util.*;
import java.util.stream.Collector;
import java.util.stream.Collectors;
/**
* @author 海棠无香
* @since 2022/10/30 7:01 下午
*/
public class StreamTest {
public final static String MIDDLE_OPERATE = "中间操作";
public final static String END_OPERATE = "终值操作";
public static class CustomStream {
public String operateName;
public Integer id;
public String describe;
public String type;
public CustomStream(String operateName, Integer id, String describe, String type) {
this.operateName = operateName;
this.id = id;
this.describe = describe;
this.type = type;
}
@Override
public String toString() {
return "Stream{" +
"operateName='" + operateName + '\'' +
", id=" + id +
", describe='" + describe + '\'' +
", type='" + type + '\'' +
'}' + "\n";
}
@Override
public boolean equals(Object o) {
if (this == o) return true;
if (o == null || getClass() != o.getClass()) return false;
CustomStream stream = (CustomStream) o;
return Objects.equals(operateName, stream.operateName) && Objects.equals(id, stream.id) && Objects.equals(describe, stream.describe) && Objects.equals(type, stream.type);
}
@Override
public int hashCode() {
return Objects.hash(operateName, id, describe, type);
}
}
private List<CustomStream> streams;
public static void main(String[] args) {
System.out.println("Stream Test");
}
@Before
public void beforeTest() {
this.streams = new ArrayList<>();
this.streams.add(new CustomStream("filter", 1, "过滤", StreamTest.MIDDLE_OPERATE));
this.streams.add(new CustomStream("distinct", 2, "去重-根据hashCode和equals方法对比", StreamTest.MIDDLE_OPERATE));
this.streams.add(new CustomStream("limit", 3, "数据量", StreamTest.MIDDLE_OPERATE));
this.streams.add(new CustomStream("skip", 4, "去掉前几个", StreamTest.MIDDLE_OPERATE));
this.streams.add(new CustomStream("map", 5, "类型修改", StreamTest.MIDDLE_OPERATE));
this.streams.add(new CustomStream("peak", 6, "遍历数据,修改数据等", StreamTest.MIDDLE_OPERATE));
this.streams.add(new CustomStream("flatMap", 7, "将每个流的内容拼接起来,进行扁平化操作", StreamTest.MIDDLE_OPERATE));
this.streams.add(new CustomStream("collect", 11, "收集:转为其他格式", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("anyMatch", 12, "任意一个元素满足条件", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("allMatch", 13, "任意全部元素都满足条件", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("noneMatch", 14, "任意一个元素都不满足条件", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("findAny", 15, "返回流中任意一个元素:Optional对象", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("findFirst", 16, "返回流中第一个元素", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("forEach", 17, "循环操作", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("count", 18, "数量", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("reduce", 19, "将结果依次整合", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("min", 20, "最大", StreamTest.END_OPERATE));
this.streams.add(new CustomStream("max", 21, "最小", StreamTest.END_OPERATE));
System.out.println(Objects.equals(this.streams.get(0), this.streams.get(2)));
}
/**
* stream 是流式操作
*/
@Test
public void testStream() {
List<CustomStream> collect = this.streams.stream()
.filter(i -> i.id > 1)
.distinct()
.skip(2)
.limit(4)
.map(i -> {
System.out.println("map---");
// 类型转换 -- 正常应该使用 peak,此处只演示用
i.id = i.id * 10;
return i;
})
.sorted((a, b) -> b.id - a.id) // 倒序
.peek(i -> System.out.println("peak--"))
.collect(Collectors.toList());
System.out.println(collect);
System.out.println("-----------------");
System.out.println(this.streams);
}
/**
* 测试 flatMap
*/
@Test
public void testFlatMap() {
List<CustomStream> s1 = new ArrayList<>();
s1.add(this.streams.get(0));
s1.add(this.streams.get(1));
s1.add(this.streams.get(2));
List<CustomStream> s2 = new ArrayList<>();
s2.add(this.streams.get(2));
s2.add(this.streams.get(3));
s2.add(this.streams.get(4));
List<List<CustomStream>> lists = new ArrayList<>();
lists.add(s1);
lists.add(s2);
List<CustomStream> collect = lists.stream().flatMap(Collection::stream).filter(i -> i.id > 2).collect(Collectors.toList());
System.out.println(collect);
}
@Test
public void testEnd() {
boolean b = this.streams.stream().peek(System.out::println).anyMatch(i -> i.id > 3);
System.out.println(b);
Map<Integer, List<CustomStream>> collect = this.streams.stream().collect(Collectors.groupingBy(i -> i.id));
System.out.println(collect);
Integer reduce = this.streams.stream().map(i -> i.id).reduce(0, Integer::sum);
System.out.println(reduce);
}
@Test
public void testGroup() {
// 分组统计类型数量
Map<String, Integer> collect = this.streams.stream().collect(Collectors.toMap(i -> i.type, v -> 1, (o, n) -> o + 1));
// Collectors.toMap 4个参数依次是:key、value、key 重复时的value设置操作、map类型
TreeMap<String, Integer> collect5 = this.streams.stream().collect(Collectors.toMap(i -> i.type, v -> 1, (o, n) -> o + 1, TreeMap::new));
// 获取type值重复出现次数在1次之上的内容
List<String> collect4 = this.streams.stream().collect(Collectors.toMap(i -> i.type, v -> 1, (o, n) -> o + 1))
.entrySet()
.stream()
.filter(i -> i.getValue() > 1)
.map(Map.Entry::getKey)
.collect(Collectors.toList());
System.out.println(collect4);
// 按类型进行分组: 一个参数:分组的key
Map<String, List<CustomStream>> collect1 = this.streams.stream().collect(Collectors.groupingBy(i -> i.type));
// 分组后,进行统计:求和、平均值或者再分组等操作:两个参数:第一个参数是分组的key,第二个参数是分组后的数据收集方式
Map<String, Integer> collect2 = this.streams.stream().collect(Collectors.groupingBy(i -> i.type, Collectors.summingInt(i -> i.id)));
// 指定map类型,默认是hashMap:三个参数:第一个参数是分组的key,第二个参数是map的类型,第三个参数是分组后的数据收集方式
TreeMap<String, Integer> collect3 = this.streams.stream().collect(Collectors.groupingBy(i -> i.type, TreeMap::new, Collectors.summingInt(i -> i.id)));
System.out.println(collect3);
}
}
网友评论