决策树

作者: 阿发贝塔伽马 | 来源:发表于2017-10-28 17:08 被阅读10次
  • 决策树归纳的基本算法是贪心算法,它以自顶向下递归各个击破的方式构造决策树。
  • 贪心算法:在每一步选择中都采取在当前状态下最好的选择。
  • 在其生成过程中,分割方法即属性选择度量是关键。通过属性选择度量,选择出最好的将样本分类的属性。
  • 根据分割方法的不同,决策树可以分为两类:基于信息论的方法(较有代表性的是ID3、C4.5算法等)和最小GINI指标方法(常用的有CART,SLIQ及SPRINT算法等)。

前面已经学习了预备知识信息量Gini index

ID3算法

ID3的属性选择度量就是使用信息增益,选择最高信息增益的属性作为当前节点的测试属性。


p是parent node首字母,
IG表示信息增益,
f表示特征,
D_p代表父节点数据集,
D_j表示子节点j的数据集,
N_p表示父节点样本个数
N_j表示子节点j样本个数

下面举个例子

Outlook Temperature Humidity Windy Play
sunny hot high false no
sunny hot high true no
overcast hot high false yes
rain mild high false yes
rain cool normal false yes
rain cool normal true no
overcast cool normal true yes
sunny mild high false no
sunny cool normal false yes
rain mild normal false yes
sunny mild normal true yes
overcast mild high true yes
overcast hot normal false yes
rain mild high true no

可以把上面数据存入excel,然后使用pandas读出来,pandas可以无缝对接excel,简直太方便了

import pandas as pd
import numpy as np

df = pd.read_excel("decision.xlsx")
print df

输出就是下面这样子


现在来计算‘Outlook’特征信息增益

import pandas as pd
import numpy as np
from collections import defaultdict
df = pd.read_excel("decision.xlsx")
#print df.dtypes
#print df.columns
#print df[df.columns[0]]
print df.index,df.shape
def I(future,label):
    df.columns
    d = defaultdict(lambda:[0,0])
    for f,l in zip(df[future], df[label]):
        if l == 'yes':
            d[f][0] += 1
        else:
            d[f][1] += 1
    return d
I('Outlook', 'Play')                

相关文章

  • 机器学习6-决策树

    一. 决策树概述 1.1 什么是决策树 决策树输入: 测试集决策树输出: 分类规则(决策树) 1.2 决策树算法概...

  • 决策树

    1、决策树 决策树学习通常包括3个步骤: 特征选择。 决策树生成。 决策树剪枝。 决策树的学习目标是:根据给定的训...

  • 决策树

    决策树 决策树模型与学习 特征选择 决策树的生成 决策树的剪枝 CART 算法 决策树模型呈树形结构,在分类问题中...

  • 决策树算法总结

    目录 一、决策树算法思想 二、决策树学习本质 三、总结 一、决策树(decision tree)算法思想: 决策树...

  • 机器学习 - 决策树算法[一]

    1 决策树模型与学习 1.1 决策树模型 决策树定义: 分类决策树模型是一种描述对实例进行分类的树形结构。决策树由...

  • 机器学习系列(三十六)——回归决策树与决策树总结

    本篇主要内容:回归决策树原理、回归树学习曲线、决策树总结 回归决策树原理 回归决策树树是用于回归的决策树模型,回归...

  • [机器学习]决策树

    决策树 @(技术博客)[机器学习, 决策树, python] 学习决策树首先要搞清楚决策树是什么(what),在弄...

  • 经典机器学习系列之【决策树详解】

      这节我们来讲说一下决策树。介绍一下决策树的基础知识、决策树的基本算法、决策树中的问题以及决策树的理解和解释。 ...

  • 第5章 决策树

    内容 一、决策树内容简介 二、决策树的模型与学习 三、特征选择 四、决策树生成 五、决策树剪枝 六、CART算法 ...

  • 决策树与随机森林

    PART I 决策树 (Decision Tree) 决策树基本知识 决策树何时停止生长:(I) all leaf...

网友评论

    本文标题:决策树

    本文链接:https://www.haomeiwen.com/subject/hbyspxtx.html