美文网首页奥数自学研究
高中奥数 2022-03-26

高中奥数 2022-03-26

作者: 天目春辉 | 来源:发表于2022-03-28 16:17 被阅读0次

    2022-03-26-01

    (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P068 习题11)

    证明或否定命题:若xy为实数且y\geqslant 0,y\left(y+1\right)\leqslant \left(x+1\right)^{2},则y\left(y-1\right)\leqslant x^{2}.

    证明

    反设y\left(y-1\right)>x^{2},则由y\geqslant 0y>1.进一步有y>\dfrac{1}{2}+\sqrt{\dfrac{1}{4}+x^{2}}.由假设y\left(y+1\right)\leqslant \left(x+1\right)^{2}y>1可知,y\leqslant -\dfrac{1}{2}+\sqrt{\dfrac{1}{4}+\left(x+1\right)^{2}},于是得到\dfrac{1}{2}+\sqrt{\dfrac{1}{4}+x^{2}}<-\dfrac{1}{2}+\sqrt{\dfrac{1}{4}+\left(x+1\right)^{2}}.

    由此不难推出\sqrt{\dfrac{1}{4}+x^{2}}<x,矛盾!故原命题成立

    2022-03-26-02

    (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P068 习题12)

    a_{1}\geqslant a_{2}\geqslant \cdots \geqslant a_{n}是满足下列条件的n个实数:对任何正整数k,有a_{1}^{k}+a_{2}^{k}+\cdots +a_{n}^{k}\geqslant 0.令p=\max\left\{\left|a_{1}\right|,\left|a_{2}\right|,\cdots,\left|a_{n}\right|\right\},求证:p=a_{1},并且对任意x>a_{1},均有
    \left(x-a_{1}\right)\left(x-a_{2}\right)\cdots \left(x-a_{n}\right)\leqslant x^{n}-a_{1}^{n}.

    证明

    对第一个结论用反证法.因为a_{1}\geqslant a_{2}\geqslant \cdots\geqslant a_{n},,则\max\left\{\left|a_{1}\right|,\left|a_{2}\right|,\cdots,\left|a_{n}\right|\right\}=a_{1}或者a_{n}(显然a_{1}>0).而若\max\left\{\left|a_{1}\right|,\left|a_{2}\right|,\cdots,\left|a_{n}\right|\right\}=\left|a_{n}\right|,则a_{n}<0,\left|a_{n}\right|>a_{1}.

    下面令a_{1}\geqslant a_{2}\geqslant \cdots \geqslant a_{n-k} > a_{n-k+1} = a_{n-k+2} =\cdots = a_{n}.

    由于0\leqslant \left|\dfrac{a_{i}}{a_{n}}\right|<1,故存在l,使得\left|\dfrac{a_{i}}{a_{n}}\right|^{2l+1}<\dfrac{1}{n}\left(1\leqslant i\leqslant n-k\right),于是
    \begin{aligned} &\left(\dfrac{a_{1}}{a_{n}}\right)^{2 l+1}+\left(\dfrac{a_{2}}{a_{n}}\right)^{2 l+1}+\cdots+\left(\dfrac{a_{n}}{a_{n}}\right)^{2 l+1} \\ =&\left(\dfrac{a_{1}}{a_{n}}\right)^{2 l+1}+\left(\dfrac{a_{2}}{a_{n}}\right)^{2 l+1}+\cdots+\left(\dfrac{a_{n-k}}{a_{n}}\right)^{2 l+1}+k \\ \geqslant & k-\left|\dfrac{a_{1}}{a_{n}}\right|^{2 l+1}-\left|\dfrac{a_{2}}{a_{n}}\right|^{2 l+1}-\cdots-\left|\dfrac{a_{n-k}}{a_{n}}\right|^{2 l+1} \\ >& k-\dfrac{n-k}{n}\\ =&k-1+\dfrac{k}{n}\\ >&0 . \end{aligned}
    从而a_{1}^{2l+1}+a_{2}^{2l+1}+\cdots +a_{n}^{2l+1}<0,矛盾!

    下面来证明第二个结论.

    x>a_{1}时,x-a_{j}>0,1\leqslant j\leqslant n,
    \begin{aligned} &\left(x-a_{1}\right)\left(x-a_{2}\right)\cdots\left(x-a_{n}\right)\\ \leqslant\left(x-a_{1}\right)\cdot\left[\dfrac{\left(x-a_{2}\right)+\cdots+\left(x-a_{n}\right)}{n-1}\right]^{n-1}\\ =\left(x-a_{1}\right)\cdot\left(x-\dfrac{a_{2}+a_{3}+\cdots+a_{n}}{n-1}\right)^{n-2}. \end{aligned}
    由于a_{1}+a_{2}+\cdots +a_{n}\geqslant 0,即a_{1}\geqslant -\left(a_{2}+a_{3}+\cdots +a_{n}\right).

    x+\dfrac{1}{n-1}a_{1}\geqslant x-\dfrac{a_{2}+a_{3}+\cdots +a_{n}}{n-1}\left(>0\right),则有
    \begin{aligned} &\left(x-a_{1}\right)\left(x-a_{2}\right)\cdots\left(x-a_{n}\right)\\ \leqslant&\left(x-a_{1}\right)\left(x+\dfrac{a_{1}}{n-1}\right)^{n-1}\\ =&\left(x-a_{1}\right)\cdot\sum\limits_{S=0}^{n-1}\mathrm{C}_{n-1}^{S}\left(\dfrac{a_{1}}{n-1}\right)^{S}\cdot x^{n-1-S}\\ =&\left(x-a_{1}\right)\cdot\sum\limits_{S=0}^{n-1}\dfrac{\mathrm{C}_{n-1}^{S}}{\left(n-1\right)^{S}}a_{1}^{S}\cdot x^{n-1-S}. \end{aligned}
    易见,当0\leqslant S\leqslant n-1时,\dfrac{\mathrm{C}_{n-1}^{S}}{\left(n-1\right)^{S}}\leqslant 1,于是
    \begin{aligned} &\left(x-a_{1}\right)\left(x-a_{2}\right)\cdots\left(x-a_{n}\right)\\ \leqslant&\left(x-a_{1}\right)\cdot\sum\limits_{S=0}^{n-1}a_{1}^{S}x^{n-1-S}\left(0>a_{1}\geqslant 0\right)\\ =&\left(x-a_{1}\right)\cdot \dfrac{x^{n-1}-a_{1}^{n}\cdot\dfrac{a_{1}}{x}}{1-\dfrac{a_{1}}{x}}\\ =&x^{n}-a_{1}^{n}. \end{aligned}

    2022-03-26-03

    (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P068 习题13)

    设实数a_{1},a_{2},\cdots,a_{n}\left(n\geqslant 2\right)A满足A+\sum\limits_{i=1}^{n}a_{i}^{2}<\dfrac{1}{n-1}\left(\sum\limits_{i=1}^{n}a_{i}\right)^{2}.

    求证:对于1\leqslant i<j\leqslant n,有A<2a_{i}a_{j}.

    证明

    用反证法,设有1\leqslant i<j\leqslant n使得A\geqslant 2a_{i}a_{j}.

    不妨设i=1,j=2,于是有
    A+\sum\limits_{i=1}^{n}a_{i}^2\geqslant 2a_{1}a_{2}+\sum\limits_{i=1}^{n}a_{i}^2=\left(a_{1}+a_{2}\right)^{2}+a_{3}^{2}+\cdots+a_{n}^{2},
    由Cauchy不等式,\left(a_{1}+a_{2}\right)^{2}+a_{3}^{2}+\cdots+a_{n}^{2}\geqslant \dfrac{1}{n-1}\cdot \left(a_{1}+a_{2}+\cdots +a_{n}\right)^{2}.

    从而有A+\sum\limits_{i=1}^{n}a_{i}^{2}\geqslant \dfrac{1}{n-1}\left(\sum\limits_{i=1}^{n}a_{i}\right)^{2},矛盾!

    故对一切1\leqslant i<j\leqslant n,有A<2a_{i}a_{j}.

    2022-03-26-04

    (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P068 习题14)

    \left\{a_{k}\right\}是一个非负实数的无限序列,k=1,2,\cdots,满足:a_{k}-2a_{k+1}+a_{k+2}\geqslant 0\sum\limits_{j=1}^{n}a_{j}\leqslant 1,k=1,2,\cdots.求证:0\leqslant a_{k}-a_{k+1}\leqslant \dfrac{2}{k^{2}},k=1,2,\cdots.

    证明

    先证明a_{k}-a_{k+1}\geqslant 0,可以用反证法.

    假设存在某个a_{k}<a_{k+1},则a_{k+1}\leqslant a_{k}-a_{k+1}+a_{k+2}<a_{k+2},序列\left\{a_{S}|S=k,k+1,\cdots\right\}是严格单调递增的.

    \sum\limits_{S=k}^{n}a_{S}\left(n>k\right)n趋向于无穷大时也趋向于无穷大,矛盾!故有a_{k}-a_{k+1}\geqslant 0,k=1,2,\cdots.

    b_{k}=a_{k}-a_{k+1}\geqslant 0,k=1,2,\cdots.
    \begin{aligned} 1&\geqslant a_{1}+a_{2}+\cdots +a_{k}\\ &=b_{1}+2b_{2}+3b_{3}+\cdots +kb_{k}+a_{k+1}\\ &\geqslant \left(1+2+3+\cdots +k\right)b_{k}\\ &=\dfrac{k\left(k+1\right)}{2}b_{k}. \end{aligned}
    所以b_{k}\leqslant \dfrac{2}{k\left(k+1\right)}<\dfrac{2}{k^{2}},因此因此0\leqslant a_{k}-a_{k+1}<\dfrac{2}{k^{2}}.

    2022-03-26-05

    (来源: 数学奥林匹克小丛书 第二版 高中卷 不等式的解题方法与技巧 苏勇 熊斌 证明不等式的基本方法 P068 习题15)

    若方程x^{4}+ax^{3}+bx+c=0的根都是实数,求证:ab\leqslant 0.

    证明

    反设ab>0,不妨设a>0,则b>0.分三种情况讨论:

    (1)若c>0,x^{4}+ax^{3}+bx+c=0的根均为负根,与x^{2}前系数为0矛盾.

    (2)若c<0,四个实根乘积为c<0,正根为1个或3个,其余为负根,再分别讨论:

    (i)如果有3个正根x_{2}x_{3}x_{4},负根为x_{1},则x_{1}+x_{2}+x_{3}+x_{4}=-a<0,故-x_{1}>-x_{1}-a=x_{2}+x_{3}+x_{4}.由于x^{2}前系数为0,应当有x_{1}\left(x_{2}+x_{3}+x_{4}\right)+x_{2}x_{3}+x_{2}x_{4}+x_{3}x_{4}=0.

    x_{2}x_{3}+x_{2}x_{4}+x_{3}x_{4}=-x_{1}\left(x_{2}+x_{3}+x_{4}\right)>\left(x_{2}+x_{3}+x_{4}\right)^{2},矛盾!

    (ii)如果仅有一个正根,不妨设x_{1}为正根,x_{2}x_{3}x_{4}为负根,x_{1}x_{2}x_{3}x_{4}\left(\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}+\dfrac{1}{x_{4}}\right)=-b<0,又由于x_{1}x_{2}x_{3}x_{4}<0,则\dfrac{1}{x_{1}}+\dfrac{1}{x_{2}}+\dfrac{1}{x_{3}}+\dfrac{1}{x_{4}}>0.由于-x_{1}\left(x_{2}+x_{3}+x_{4}\right)=x_{2}x_{3}+x_{3}x_{4}+x_{2}x_{4}>0;,两式相乘,得到-\left(x_{2}+x_{3}+x_{4}\right)>\left(-\dfrac{1}{x_{2}}-\dfrac{1}{x_{3}}-\dfrac{1}{x_{4}}\right)\left(x_{2}x_{3}+x_{3}x_{4}+x_{4}x_{2}\right)=-2\left(x_{2}+x_{3}+x_{4}\right)-\left(\dfrac{x_{2}x_{3}}{x_{4}}+\dfrac{x_{3}x_{4}}{x_{2}}+\dfrac{x_{4}x_{2}}{x_{3}}\right),矛盾!

    (3)若c=0,x^{3}+ax^{2}+b=0有三个实根,由于a>0,b>0,三个实数均为负根,由于x前面系数为0,则根的两两乘积之和为0,矛盾!

    综上所述,ab\leqslant 0.

    相关文章

      网友评论

        本文标题:高中奥数 2022-03-26

        本文链接:https://www.haomeiwen.com/subject/hevpjrtx.html