当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap)。交换会让 Redis 的性能急剧下降,对于访问量比较频繁的 Redis 来说,这样龟速的存取效率基本上等于不可用。在生产环境中我们是不允许 Redis 出现交换行为的,为了限制最大使用内存,Redis 提供了配置参数 maxmemory 来限制内存超出期望大小。 当实际内存超出 maxmemory 时,Redis 提供了几种可选策略 (maxmemory-policy) 来让用户自己决定该如何腾出新的空间以继续提供读写服务。
- noeviction 不会继续服务写请求 (DEL 请求可以继续服务),读请求可以继续进行。这样可以保证不会丢失数据,但是会让线上的业务不能持续进行。这是默认的淘汰策略。
- volatile-lru 尝试淘汰设置了过期时间的 key,最少使用的 key 优先被淘汰。没有设置过期时间的 key 不会被淘汰,这样可以保证需要持久化的数据不会突然丢失
- volatile-ttl 跟上面一样,除了淘汰的策略不是 LRU,而是 key 的剩余寿命 ttl 的值,ttl 越小越优先被淘汰。
- volatile-random 跟上面一样,不过淘汰的 key 是过期 key 集合中随机的 key。
- allkeys-lru 区别于 volatile-lru,这个策略要淘汰的 key 对象是全体的 key 集合,而不只是过期的 key 集合。这意味着没有设置过期时间的 key 也会被淘汰。
- allkeys-random 跟上面一样,不过淘汰的策略是随机的 key。
- volatile-xxx 策略只会针对带过期时间的 key 进行淘汰,allkeys-xxx 策略会对所有的 key 进行淘汰。如果你只是拿 Redis 做缓存,那应该使用 allkeys-xxx,客户端写缓存时不必携带过期时间。如果你还想同时使用 Redis 的持久化功能,那就使用 volatile-xxx 策略,这样可以保留没有设置过期时间的 key,它们是永久的 key 不会被 LRU 算法淘汰。
LRU 算法
实现 LRU 算法除了需要 key/value 字典外,还需要附加一个链表,链表中的元素按照一定的顺序进行排列。当空间满的时候,会踢掉链表尾部的元素。当字典的某个元素被访问时,它在链表中的位置会被移动到表头。所以链表的元素排列顺序就是元素最近被访问的时间顺序。 位于链表尾部的元素就是不被重用的元素,所以会被踢掉。位于表头的元素就是最近刚刚被人用过的元素,所以暂时不会被踢。
Redis 的近似LRU 算法
Redis 使用的是一种近似 LRU 算法,它跟 LRU 算法还不太一样。之所以不使用 LRU 算法,是因为需要消耗大量的额外的内存,需要对现有的数据结构进行较大的改造。近似 LRU 算法则很简单,在现有数据结构的基础上使用随机采样法来淘汰元素,能达到和 LRU 算法非常近似的效果。Redis 为实现近似 LRU 算法,它给每个 key 增加了一个额外的小字段,这个字段的长度是 24 个 bit,也就是最后一次被访问的时间戳。当 Redis 执行写操作时,发现内存超出 maxmemory,就会执行一次 LRU 淘汰算法。这个算法也很简单,就是随机采样出 5(可以配置) 个 key,然后淘汰掉最旧的 key,如果淘汰后内存还是超出 maxmemory,那就继续随机采样淘汰,直到内存低于 maxmemory 为止
网友评论