Pandas 数据可视化总结

作者: 旭Louis | 来源:发表于2019-05-09 16:50 被阅读469次

    基本图形

    柱状图

    reviews['points'].value_counts().sort_index().plot.bar()
    

    散点图

    reviews[reviews['price'] < 100].sample(100).plot.scatter(x='price', y='points')
    
    image.png

    蜂窝图

    reviews[reviews['price'] < 100].plot.hexbin(x='price', y='points', gridsize=15)
    
    image.png

    大量重复的点可以用这种图表示

    柱状图-叠加模式

    image.png
    wine_counts.plot.bar(stacked=True)
    
    image.png

    面积模式

    wine_counts.plot.area()
    

    折线模式

    wine_counts.plot.line()
    

    美化

    设置图的大小,字体大小,颜色,标题

    reviews['points'].value_counts().sort_index().plot.bar(
        figsize=(12, 6),
        color='mediumvioletred',
        fontsize=16,
        title='Rankings Given by Wine Magazine',
    )
    

    借助Matplotlib

    import matplotlib.pyplot as plt
    
    ax = reviews['points'].value_counts().sort_index().plot.bar(
        figsize=(12, 6),
        color='mediumvioletred',
        fontsize=16
    )
    ax.set_title("Rankings Given by Wine Magazine", fontsize=20)
    
    image.png

    借助Seaborn-去除边框

    import matplotlib.pyplot as plt
    import seaborn as sns
    
    ax = reviews['points'].value_counts().sort_index().plot.bar(
        figsize=(12, 6),
        color='mediumvioletred',
        fontsize=16
    )
    ax.set_title("Rankings Given by Wine Magazine", fontsize=20)
    sns.despine(bottom=True, left=True)
    
    image.png

    多图表

    matplotlib

    fig, axarr = plt.subplots(2, 2, figsize=(12, 8))
    
    reviews['points'].value_counts().sort_index().plot.bar(
        ax=axarr[0][0]
    )
    
    reviews['province'].value_counts().head(20).plot.bar(
        ax=axarr[1][1]
    
    image.png

    Seaborn

    df = footballers[footballers['Position'].isin(['ST', 'GK'])]
    g = sns.FacetGrid(df, col="Position", col_wrap=2)
    g.map(sns.kdeplot, "Overall")
    
    image.png
    df = footballers[footballers['Position'].isin(['ST', 'GK'])]
    df = df[df['Club'].isin(['Real Madrid CF', 'FC Barcelona', 'Atlético Madrid'])]
    
    g = sns.FacetGrid(df, row="Position", col="Club")
    g.map(sns.violinplot, "Overall")
    
    image.png
    df = footballers[footballers['Position'].isin(['ST', 'GK'])]
    df = df[df['Club'].isin(['Real Madrid CF', 'FC Barcelona', 'Atlético Madrid'])]
    
    g = sns.FacetGrid(df, row="Position", col="Club", 
                      row_order=['GK', 'ST'],
                      col_order=['Atlético Madrid', 'FC Barcelona', 'Real Madrid CF'])
    g.map(sns.violinplot, "Overall")
    

    控制显示顺序

    pairplot-多变量的相互关系

    sns.pairplot(footballers[['Overall', 'Potential', 'Value']])
    
    image.png

    颜色,图标参数

    sns.lmplot(
      x='Value', y='Overall', 
      markers=['o', 'x', '*'], 
      hue='Position', 
      data=footballers.loc[footballers['Position'].isin(
        ['ST', 'RW', 'LW'])],
      fit_reg=False
    )
    
    image.png

    分组

    f = (footballers
             .loc[footballers['Position'].isin(['ST', 'GK'])]
             .loc[:, ['Value', 'Overall', 'Aggression', 'Position']]
        )
    f = f[f["Overall"] >= 80]
    f = f[f["Overall"] < 85]
    f['Aggression'] = f['Aggression'].astype(float)
    
    sns.boxplot(x="Overall", y="Aggression", hue='Position', data=f)
    
    image.png

    总结图

    热力图

    f = (
        footballers.loc[:, ['Acceleration', 'Aggression', 'Agility', 'Balance', 'Ball control']]
            .applymap(lambda v: int(v) if str.isdecimal(v) else np.nan)
            .dropna()
    ).corr()
    
    sns.heatmap(f, annot=True)
    
    image.png

    平行线图

    from pandas.plotting import parallel_coordinates
    
    f = (
        footballers.iloc[:, 12:17]
            .loc[footballers['Position'].isin(['ST', 'GK'])]
            .applymap(lambda v: int(v) if str.isdecimal(v) else np.nan)
            .dropna()
    )
    f['Position'] = footballers['Position']
    f = f.sample(200)
    
    parallel_coordinates(f, 'Position')
    
    image.png

    Seanborn使用

    基本图形

    柱状图-值统计

    countplot == value_count

    sns.countplot(reviews['points'])
    
    image.png

    折线图-密度图

    sns.kdeplot(reviews.query('price < 200').price)
    
    image.png

    二维密度图--类似蜂窝图作用

    样本多,重复点多的时候用

    sns.kdeplot(reviews[reviews['price'] < 200].loc[:, ['price', 'points']].dropna().sample(5000))
    
    image.png

    直方图

    类似pandas.hist

    sns.distplot(reviews['points'], bins=10, kde=False)
    
    image.png

    散点图和直方图复合

    sns.jointplot(x='price', y='points', data=reviews[reviews['price'] < 100])
    
    image.png

    蜂窝图和直方图复合

    sns.jointplot(x='price', y='points', data=reviews[reviews['price'] < 100], kind='hex',gridsize=20)
    
    image.png

    箱线图

    df = reviews[reviews.variety.isin(reviews.variety.value_counts().head(5).index)]
    sns.boxplot(
        x='variety',
        y='points',
        data=df
    )
    
    image.png

    小提琴图

    sns.violinplot(
        x='variety',
        y='points',
        data=reviews[reviews.variety.isin(reviews.variety.value_counts()[:5].index)]
    )
    
    image.png

    网络动态图表-plotly

    from plotly.offline import init_notebook_mode, iplot
    init_notebook_mode(connected=True)
    
    

    散点图

    import plotly.graph_objs as go
    
    iplot([go.Scatter(x=reviews.head(1000)['points'], y=reviews.head(1000)['price'], mode='markers')])
    
    image.png

    热力图

    iplot([go.Histogram2dContour(x=reviews.head(500)['points'], 
                                 y=reviews.head(500)['price'], 
                                 contours=go.Contours(coloring='heatmap')),
           go.Scatter(x=reviews.head(1000)['points'], y=reviews.head(1000)['price'], mode='markers')])
    
    image.png

    图形语法的可视化库plotnine

    from plotnine import *
    
    top_wines = reviews[reviews['variety'].isin(reviews['variety'].value_counts().head(5).index)]
    
    df = top_wines.head(1000).dropna()
    
    (ggplot(df)
     + aes('points', 'price')
     + geom_point())
    
    #其他表达形式ggplot(df)
     + geom_point(aes('points', 'price'))
    )
    
    (ggplot(df, aes('points', 'price'))
     + geom_point
    

    一层层添加图形参数


    image.png
    df = top_wines.head(1000).dropna()
    
    (
        ggplot(df)
            + aes('points', 'price')
            + geom_point()
            + stat_smooth()
    )
    
    image.png

    添加颜色

    df = top_wines.head(1000).dropna()
    
    (
        ggplot(df)
            + geom_point()
            + aes(color='points')
            + aes('points', 'price')
            + stat_smooth()
    )
    

    一图多表

    df = top_wines.head(1000).dropna()
    
    (ggplot(df)
         + aes('points', 'price')
         + aes(color='points')
         + geom_point()
         + stat_smooth()
         + facet_wrap('~variety')
    )
    
    image.png

    柱状图

    (ggplot(top_wines)
         + aes('points')
         + geom_bar()
    )
    
    image.png

    二维热力图

    (ggplot(top_wines)
         + aes('points', 'variety')
         + geom_bin2d(bins=20)
    )
    
    image.png

    更多API文档 API Reference.

    处理时间序列

    一般柱状图

    shelter_outcomes['date_of_birth'].value_counts().sort_values().plot.line()
    
    image.png

    按年份重新取样

    shelter_outcomes['date_of_birth'].value_counts().resample('Y').sum().plot.line()
    
    image.png
    stocks['volume'].resample('Y').mean().plot.bar()
    
    image.png

    同期对比

    如今年12月和去年12月比较

    from pandas.plotting import lag_plot
    
    lag_plot(stocks['volume'].tail(250))
    
    image.png

    自相关图

    from pandas.plotting import autocorrelation_plot
    
    autocorrelation_plot(stocks['volume'])
    
    image.png

    相关文章

      网友评论

        本文标题:Pandas 数据可视化总结

        本文链接:https://www.haomeiwen.com/subject/hkoeaftx.html