美文网首页
AI面试第六弹(评价指标)

AI面试第六弹(评价指标)

作者: 加油11dd23 | 来源:发表于2020-09-09 20:51 被阅读0次

一、分类问题指标

分类问题的评价指标多是基于以下混淆矩阵
·真实值是positive,模型认为是positive的数量(True Positive=TP)
·真实值是positive,模型认为是negative的数量(False Negative=FN):这就是统计学上的第二类错误(Type II Error)
·真实值是negative,模型认为是positive的数量(False Positive=FP):这就是统计学上的第一类错误(Type I Error)
·真实值是negative,模型认为是negative的数量(True Negative=TN)


混淆矩阵.png

1、准确率(Accuracy):识别对了的正例(TP)与负例(TN)占总识别样本的比例。
2、精确率(Precision):识别对了的正例(TP)占识别出的正例的比例。其中,识别出的正例等于识别对了的正例加上识别错了的正例。
3、召回率(Recall):识别对了的正例(TP)占实际总正例的比例。其中,实际总正例等于识别对了的正例加上识别错了的负例(真正例+伪负例)。
4、F-Score,是召回率R和精度P的加权调和平均,顾名思义即是为了调和召回率R和精度P之间增减反向的矛盾,该综合评价指标F引入了系数α对R和P进行加权调和

F-score.png
5、ROC曲线,也称受试者工作特征。以FPR为横轴,TPR为纵轴,绘制得到的曲线就是ROC曲线。ROC曲线下的面积即为AUC。面积越大代表模型的分类性能越好。
ROC曲线.png

6、AUC:随机挑选一个正样本以及负样本,算法将正样本排在负样本前面的概率就是AUC值。 M为正类样本的数目,N为负类样本的数目。

AUC计算公式.png

特点:AUC的评价效果不受正负样本比例的影响。因为改变正负样本比例,横纵坐标大小同时变化。整体不变。

二、回归问题评价指标:

1、MAE(Mean Absolute Error)是绝对误差的平均值。可以更好地反映预测值误差的实际情况
2、MSE是真实值与预测值的差值的平方然后求和平均。通过平方的形式便于求导,所以常被用作线性回归的损失函数。
3、RMSE(Root Mean Square Error)衡量观测值与真实值之间的偏差。常用来作为机器学习模型预测结果衡量的标准。 受异常点影响较大。

RMSE计算公式.png
4、R-square(决定系数),分母理解为原始数据的离散程度,分子为预测数据和原始数据的误差,二者相除可以消除原始数据离散程度的影响。
R-square计算公式.png
(此处的R即相关系数,相关系数的平方就是决定系数R-Square。其中分母的y_mean是y_actual的mean。)
分子是残差的平方之和;分母是总方差;把“1减”揉进分式后,变成了“(总方差 - 残差平方和)/ 总方差 ”。
所以,R-Square理解成 “预测的误差的方差”小于实际情况的方差的比例。

相关文章

  • AI面试第六弹(评价指标)

    一、分类问题指标 分类问题的评价指标多是基于以下混淆矩阵·真实值是positive,模型认为是positive的数...

  • 评价指标

    用户满意度 预测准确度 覆盖率:用基尼系数,流行度越平均,基尼系数越低 多样性:指物品间的多样性,物品间的相似度越...

  • 评价指标

  • 评价指标

    AUC(Area under curve): ROC曲线下的面积。 AUC详解 :参考链接

  • 评价指标

    他写得超好,刚好看到的论文用到NDCG是用的DCG / IDCG。https://www.cnblogs.com/...

  • 评价指标

    假定一定有k+1类(包括k个目标类和1个背景类),表示本属于i类却预测为j类的像素点总数,具体地,表示true p...

  • 评价指标

    TP,FP,TN,FN P与N代表预测结果,P为正样本,N为负样本。T与F代表预测结果是否正确。 召回率,精确率,...

  • 评价指标

    1、IOU 分割或者目标检测预测prediction,可以分成4个部分:1、true negative(TN)把区...

  • 好过教育 教师资格证面试丨结构化面试评分表与答题模板

    一、什么叫结构化面试 结构化面试,也称标准化面试,是相对于传统的经验型面试而言的,是根据所制定的评价指标,运用特定...

  • 多标签分类的评价方法

    基于排序的评价指标 TODO 2 基于分类的评价指标 2.1 document-pivoted binary 针对...

网友评论

      本文标题:AI面试第六弹(评价指标)

      本文链接:https://www.haomeiwen.com/subject/iewfektx.html