博弈论的研究起始于1944年冯·诺依曼(Von Neumann)和奥斯卡·摩根斯坦(Oscar
Morgenstern)合著的《博弈论和经济行为》。
约翰·纳什,生于1928年6月13日。除了大家熟知的《美丽心灵》男主角原型,还是著名经济学家、博弈论创始人,主要研究博弈论、微分几何学和偏微分方程,1994年诺贝尔经济学奖。
纳什平衡,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什平衡。
一个策略组合被称为纳什平衡,当每个博弈者的平衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。
智猪博弈
猪圈里有两头猪,一头大猪,一头小猪。猪圈的一边有个踏板,每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只猪各会采取什么策略?答案是:小猪将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大猪则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小猪踩踏板将一无所获,不踩踏板反而能吃上食物。对小猪而言,无论大猪是否踩动踏板,不踩踏板总是好的选择。反观大猪,已明知小猪是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
枪手博弈
王者的悲哀。三人对枪自决,甲乙丙枪法优劣递减。最后无奈而神奇的结局,将不取决于同时开枪还是先后开枪,最优良的枪手,倒下的概率将最高;而最蹩脚的枪手,存活的希望却最大。因为没有人会把威胁最小的枪手列为一号清楚目标。在这里,后发制人的弱势者将胜出。以弱胜强,绝不是神话。
囚徒困境
假设有两个小偷A和B联合犯事、私入民宅被警察抓住。警方将两人分别置于不同的两个房间内进行审讯,对每一个犯罪嫌疑人,警方给出的政策是:如果一个犯罪嫌疑人坦白了罪行,交出了赃物,于是证据确凿,两人都被判有罪。如果另一个犯罪嫌疑人也作了坦白,则两人各被判刑8年;如果另一个犯罪嫌人没有坦白而是抵赖,则以妨碍公务罪(因已有证据表明其有罪)再加刑2年,而坦白者有功被减刑8年,立即释放。如果两人都抵赖,则警方因证据不足不能判两人的偷窃罪,但可以私入民宅的罪名将两人各判入狱1年。
关于这个案例,显然最好的策略是双方都抵赖,结果是大家都只被判1年。但是由于两人处于隔离的情况,首先应该是从心理学的角度来看,当事双方都会怀疑对方会出卖自己以求自保、其次才是亚当-斯密的理论,假设每个人都是“理性的经济人”,都会从利己的目的出发进行选择。这两个人都会有这样一个盘算过程:假如A坦白,B抵赖,B得坐10年监狱,B坦白最多才8年;B要是抵赖,A就可以被释放,而B会坐10年牢。综合以上几种情况考虑,不管A坦白与否,对B而言都是坦白了划算。两个人都会动这样的脑筋,最终,两个人都选择了坦白,结果都被判8年刑期。
硬币正反
你正在图书馆枯坐,一位陌生美女主动过来和你搭讪,并要求和你一起玩个数学游戏。美女提议:“让我们各自亮出硬币的一面,或正或反。如果我们都是正面,那么我给你3元,如果我们都是反面,我给你1元,剩下的情况你给我2元就可以了。”那么该不该和这位姑娘玩这个游戏呢?这基本是废话,当然该。问题是,这个游戏公平吗?
每一种游戏依具其规则的不同会存在两种纳什平衡,一种是纯策略纳什平衡,也就是说玩家都能够采取固定的策略(比如一直出正面或者一直出反面),使得每人都赚得最多或亏得最少;或者是混合策略纳什平衡,而在这个游戏中,便应该采用混合策略纳什平衡。
现实的另一个例子:巴勒斯坦要求以色列首先交还其领土,然后才声明放弃恐怖活动;而以色列要求巴勒斯坦首先宣布放弃恐怖活动,然后才交还占领的巴勒斯坦领土。双方都不愿意首先改变自己的策略。先放弃或者先归还领土,这是个问题,背信弃义完全可能存在。因此,双方都没有首先改变自己当前的策略,这种双方的焦灼状态就是博弈论里的纳什均衡。
网友评论