美文网首页机器学习
Thompson抽样算法-R

Thompson抽样算法-R

作者: 灵妍 | 来源:发表于2018-04-18 22:04 被阅读35次

    楔子:


    Thompson抽样算法.PNG 贝叶斯推理.PNG
    1、数据预处理

    代码:

    # Thompson Sampling
    
    # Importing the dataset
    dataset = read.csv('Ads_CTR_Optimisation.csv')
    
    2、数据初始化

    代码:

    # Implementing Thompson Sampling
    N = 10000
    d = 10
    ads_selected = integer(0)
    numbers_of_rewards_1 = integer(d)
    numbers_of_rewards_0 = integer(d)
    total_reward = 0
    
    3、ThompsonSampling

    代码:

    for (n in 1:N) {
      ad = 0
      max_random = 0
      for (i in 1:d) {
        random_beta = rbeta(n = 1,
                            shape1 = numbers_of_rewards_1[i] + 1,
                            shape2 = numbers_of_rewards_0[i] + 1)
        if (random_beta > max_random) {
          max_random = random_beta
          ad = i
        }
      }
      ads_selected = append(ads_selected, ad)
      reward = dataset[n, ad]
      if (reward == 1) {
        numbers_of_rewards_1[ad] = numbers_of_rewards_1[ad] + 1
      } else {
        numbers_of_rewards_0[ad] = numbers_of_rewards_0[ad] + 1
      }
      total_reward = total_reward + reward
    }
    
    4、数据可视化

    代码:

    # Visualising the results
    hist(ads_selected,
         col = 'blue',
         main = 'Histogram of ads selections',
         xlab = 'Ads',
         ylab = 'Number of times each ad was selected')
    
    5、结果
    最佳广告.PNG 点击次数.PNG

    我们可以看出:无论是点击次数还是寻找最佳广告的速度,Thompson抽样算法都更胜一筹。

    相关文章

      网友评论

        本文标题:Thompson抽样算法-R

        本文链接:https://www.haomeiwen.com/subject/irnbkftx.html