【内容要求】
1.图形的认识与测量
(1)结合实例认识线段、射线和直线;体会两点间所有连线中线段最短,知道两点间距离;会用直尺和圆规作一条线段等于已知线段(例26);了解同一平面内两条直线的位置关系。
(2)结合生活情境认识角,知道角的大小关系;会用量角器量角,会用量角器或三角板画角。
(3)认识长度单位千米,知道分米、毫米;认识面积单位平方厘米、平方分米、平方米;能进行简单的单位换算;能恰当地选择单位估测一些物体的长度和面积,会进行测量。
(4)认识三角形和四边形,会根据图形特征对三角形和四边形进行分类。
(5)结合实例认识周长和面积;探索并掌握长方形、正方形的周长和面积的计算公式。
(6)能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体。
(7)在图形认识与测量的过程中,增强空间观念和量感。
2.图形的位置与运动
(1)结合实例,感受平移、旋转、轴对称现象(例27)。
(2)在感受图形的位置与运动的过程中,形成空间观念和初步的几何直观。
【学业要求】
1.图形的认识与测量
能说出线段、射线和直线的共性与区别;知道两点间所有连线中线段最短,能在具体情境中运用"两点之间线段最短"解决简单问题;能辨认同一平面内两条直线是否平行或垂直;能辨认从不同角度 观察简单物体所对应的照片或直观图。形成空间观念和初步的几何直观。
会比较角的大小;能说出直角、锐角、钝角的特征,能辨认平角和周角;会用量角器测量角的大小,能用直尺和量角器画出指定度数的角;会用三角板画30°,45°,60°,90°的角。
会根据角的特征对三角形分类,认识直角三角形、锐角三角形和钝角三角形;能根据边的相等关系,认识等腰三角形和等边三角形。能说出长方形、正方形、平行四边形、梯形的特征;能说出图形之间的共性与区别(例28)。形成空间观念和初步的几何直观。
能描述长度单位千米、分米、毫米,能进行长度单位之间的换算;能在真实情境中选择合适的长度单位。能通过具体事例描述面积单位平方厘米、平方分米、平方米,能进行面积单位之间的换算。
经历用直尺和圆规将三角形的三条边画到一条直线上的过程,直
观感受三角形的周长(例29),知道什么是图形的周长;会测量三角形、长方形和正方形的周长;会计算长方形、正方形的周长和面积。
在解决图形周长、面积的实际问题过程中,逐步积累操作的经验,形成量感和初步的几何直观。
2.图形的位置与运动
能在实际情境中,辨认出生活中的平移、旋转和轴对称现象,直观感知平移、旋转和轴对称的特征,能利用平移或旋转解释现实生活中的现象,形成空间观念。
【教学提示】
图形的认识与测量的教学。将图形的认识与图形的测量有机融合,引导学生从图形的直观感知到探索特征,并进行图形的度量。
图形的认识教学要帮助学生建立几何图形的直观概念。通过观察长方体的外表认识面,通过面的边缘认识线段,感悟图形抽象的过程。
在认识线段的基础上,引导学生用直尺和圆规作给定线段的等长 线段,感知线段长度与两点间距离的关系(例26),增强几何直观。
结合实际情境,感受同一平面内两条直线的两种位置关系,借助 动态演示或具体操作,感悟两条直线平行与相交的差异。
角的认识教学可以利用纸扇、滑梯等学生熟悉的事物或场景直观感知角,利用抽象图形引导学生知道角的大小与边的长短无关,并比较角的大小。利用学具让学生观察角的大小变化,认识直角、锐角、钝角、平角和周角。启发学生根据角的特征将三角形分为锐角三角形、直角三角形和钝角三角形;通过边的特征知道等腰三角形和等边三角形。引导学生在认识长方形、正方形、平行四边形、梯形的过程中,感悟这几类四边形的共性与区别(例28)。
结合学生身边熟悉的场景,通过从不同方位观察同一物体,引导学生将观察到的图像与观察方位对应,发展空间观念和想象能力。
图形的面积教学要让学生在熟悉的情境中,直观感知面积的概念,经历选择面积单位进行测量的过程,理解面积的意义,形成量感。
图形的周长教学可以借助用直尺和圆规作图的方法,引导学生自主探索三角形的周长,感知线段长度的可加性,理解三角形的周长 (例29),归纳出长方形和正方形周长的计算公式。采用类比的方法,感知图形面积的可加性,推导出长方形和正方形面积的计算公式。在探索的过程中,形成初步的几何直观和推理意识。
图形的位置与运动的教学。尽量选择学生熟悉的情境,通过组织有趣的活动(例30)或布置需要较长时间完成的长作业(例31),帮助学生认识平移、旋转和轴对称的现象,感知特征,增强空间观念。
网友评论